File size: 2,016 Bytes
0733bae
9a74a44
 
0733bae
9a74a44
0733bae
9a74a44
0733bae
1b8dc92
 
0733bae
9a74a44
0733bae
 
 
 
 
 
9a74a44
0733bae
9a74a44
1b8dc92
74fe304
feb112a
0733bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c17e695
 
0733bae
 
 
 
a9dd21f
1b8dc92
 
 
 
feb112a
 
 
 
 
 
 
 
 
 
 
 
1b8dc92
4dcf62c
0733bae
 
feb112a
52c0183
feb112a
d2e7fed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language:
- en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Base EN
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Base EN

This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the ADLINK dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0003
- Wer: 1.5152

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0495        | 25.0  | 100  | 1.0270          | 2.1212 |
| 0.3802        | 50.0  | 200  | 0.3923          | 1.8182 |
| 0.0205        | 75.0  | 300  | 0.0130          | 1.8182 |
| 0.0012        | 100.0 | 400  | 0.0012          | 0.9091 |
| 0.0006        | 125.0 | 500  | 0.0006          | 0.9091 |
| 0.0004        | 150.0 | 600  | 0.0004          | 0.9091 |
| 0.0003        | 175.0 | 700  | 0.0003          | 0.9091 |
| 0.0003        | 200.0 | 800  | 0.0003          | 2.1212 |
| 0.0003        | 225.0 | 900  | 0.0003          | 2.1212 |
| 0.0003        | 250.0 | 1000 | 0.0003          | 1.5152 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.19.2
- Tokenizers 0.19.1