--- language: - en license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Base EN results: [] --- # Whisper Base EN This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the ADLINK dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 33.6364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4926 | 25.0 | 100 | 0.1674 | 57.5758 | | 0.0002 | 50.0 | 200 | 0.0001 | 3.9394 | | 0.0001 | 75.0 | 300 | 0.0001 | 5.1515 | | 0.0001 | 100.0 | 400 | 0.0001 | 10.3030 | | 0.0001 | 125.0 | 500 | 0.0001 | 11.5152 | | 0.0 | 150.0 | 600 | 0.0000 | 28.4848 | | 0.0 | 175.0 | 700 | 0.0000 | 30.0 | | 0.0 | 200.0 | 800 | 0.0000 | 29.0909 | | 0.0 | 225.0 | 900 | 0.0000 | 33.6364 | | 0.0 | 250.0 | 1000 | 0.0000 | 33.6364 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.19.1 - Tokenizers 0.19.1