--- language: - en license: apache-2.0 base_model: openai/whisper-base.en tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Base EN results: [] --- # Whisper Base EN This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the ADLINK dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Wer: 1.2422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.5447 | 33.33 | 100 | 1.2099 | 11.4907 | | 0.4211 | 66.67 | 200 | 0.3868 | 1.5528 | | 0.0987 | 100.0 | 300 | 0.0761 | 1.8634 | | 0.006 | 133.33 | 400 | 0.0040 | 1.2422 | | 0.0011 | 166.67 | 500 | 0.0010 | 1.2422 | | 0.0006 | 200.0 | 600 | 0.0006 | 1.2422 | | 0.0004 | 233.33 | 700 | 0.0004 | 1.2422 | | 0.0003 | 266.67 | 800 | 0.0003 | 1.2422 | | 0.0003 | 300.0 | 900 | 0.0003 | 1.2422 | | 0.0003 | 333.33 | 1000 | 0.0003 | 1.2422 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1