--- language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Base EN results: [] --- # Whisper Base EN This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the ADLINK dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Wer: 1.5152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0495 | 25.0 | 100 | 1.0270 | 2.1212 | | 0.3802 | 50.0 | 200 | 0.3923 | 1.8182 | | 0.0205 | 75.0 | 300 | 0.0130 | 1.8182 | | 0.0012 | 100.0 | 400 | 0.0012 | 0.9091 | | 0.0006 | 125.0 | 500 | 0.0006 | 0.9091 | | 0.0004 | 150.0 | 600 | 0.0004 | 0.9091 | | 0.0003 | 175.0 | 700 | 0.0003 | 0.9091 | | 0.0003 | 200.0 | 800 | 0.0003 | 2.1212 | | 0.0003 | 225.0 | 900 | 0.0003 | 2.1212 | | 0.0003 | 250.0 | 1000 | 0.0003 | 1.5152 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.19.2 - Tokenizers 0.19.1