File size: 15,974 Bytes
264da51
 
3f1e5fe
 
 
264da51
3f1e5fe
 
055fae2
3f1e5fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5768e
 
3f1e5fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5768e
 
 
 
 
 
 
 
3f1e5fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5768e
3f1e5fe
 
 
 
055fae2
 
 
 
 
 
 
 
3f1e5fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
---
license: cc-by-4.0
language:
- he
inference: false
---
# DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew

State-of-the-art language model for parsing Hebrew, released [here](https://arxiv.org/abs/2403.06970).

This is the fine-tuned model for the joint parsing of the following tasks: 

- Prefix Segmentation
- Morphological Disabmgiuation
- Lexicographical Analysis (Lemmatization)
- Syntactical Parsing (Dependency-Tree)
- Named-Entity Recognition

This model was initialized from dictabert-**large**-joint and tuned on the Hebrew UD Treebank and NEMO corpora, to align the predictions of the model to the tagging methodology in those corpora.

A live demo of the `dictabert-joint` model with instant visualization of the syntax tree can be found [here](https://huggingface.co/spaces/dicta-il/joint-demo).

For a faster model, you can use the equivalent bert-tiny model for this task [here](https://huggingface.co/dicta-il/dictabert-tiny-parse).

For the bert-base models for other tasks, see [here](https://huggingface.co/collections/dicta-il/dictabert-6588e7cc08f83845fc42a18b).

---

The model currently supports 3 types of output:

1. **JSON**: The model returns a JSON object for each sentence in the input, where for each sentence we have the sentence text, the NER entities, and the list of tokens. For each token we include the output from each of the tasks.
    ```python
    model.predict(..., output_style='json')
    ```    

1. **UD**: The model returns the full UD output for each sentence, according to the style of the Hebrew UD Treebank. 
    ```python
    model.predict(..., output_style='ud')
    ```

1. **UD, in the style of IAHLT**: This model returns the full UD output, with slight modifications to match the style of IAHLT. This differences are mostly granularity of some dependency relations, how the suffix of a word is broken up, and implicit definite articles. The actual tagging behavior doesn't change.
    ```python
    model.predict(..., output_style='iahlt_ud')
    ```

---

If you only need the output for one of the tasks, you can tell the model to not initialize some of the heads, for example:
```python
model = AutoModel.from_pretrained('dicta-il/dictabert-parse', trust_remote_code=True, do_lex=False)
```

The list of options are: `do_lex`, `do_syntax`, `do_ner`, `do_prefix`, `do_morph`. 

---

Sample usage:

```python
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-large-parse')
model = AutoModel.from_pretrained('dicta-il/dictabert-large-parse', trust_remote_code=True)

model.eval()

sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 诇讬诪讜讚讬讜 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
print(model.predict([sentence], tokenizer, output_style='json')) # see below for other return formats
```

Output:
```json
[
  {
    "text": "讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 诇讬诪讜讚讬讜 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐",
    "tokens": [
      {
        "token": "讘砖谞转",
        "offsets": {
          "start": 0,
          "end": 4
        },
        "syntax": {
          "word": "讘砖谞转",
          "dep_head_idx": 2,
          "dep_func": "obl",
          "dep_head": "讛砖诇讬诐"
        },
        "seg": [
          "讘",
          "砖谞转"
        ],
        "lex": "砖谞讛",
        "morph": {
          "token": "讘砖谞转",
          "pos": "NOUN",
          "feats": {
            "Gender": "Fem",
            "Number": "Sing"
          },
          "prefixes": [
            "ADP"
          ],
          "suffix": false
        }
      },
      {
        "token": "1948",
        "offsets": {
          "start": 5,
          "end": 9
        },
        "syntax": {
          "word": "1948",
          "dep_head_idx": 0,
          "dep_func": "compound:smixut",
          "dep_head": "讘砖谞转"
        },
        "seg": [
          "1948"
        ],
        "lex": "1948",
        "morph": {
          "token": "1948",
          "pos": "NUM",
          "feats": {},
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "讛砖诇讬诐",
        "offsets": {
          "start": 10,
          "end": 15
        },
        "syntax": {
          "word": "讛砖诇讬诐",
          "dep_head_idx": -1,
          "dep_func": "root",
          "dep_head": "讛讜诪讜专讬住讟讬讬诐"
        },
        "seg": [
          "讛砖诇讬诐"
        ],
        "lex": "讛砖诇讬诐",
        "morph": {
          "token": "讛砖诇讬诐",
          "pos": "VERB",
          "feats": {
            "Gender": "Masc",
            "Number": "Sing",
            "Person": "3",
            "Tense": "Past"
          },
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "讗驻专讬诐",
        "offsets": {
          "start": 16,
          "end": 21
        },
        "syntax": {
          "word": "讗驻专讬诐",
          "dep_head_idx": 2,
          "dep_func": "nsubj",
          "dep_head": "讛砖诇讬诐"
        },
        "seg": [
          "讗驻专讬诐"
        ],
        "lex": "讗驻专讬诐",
        "morph": {
          "token": "讗驻专讬诐",
          "pos": "PROPN",
          "feats": {},
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "拽讬砖讜谉",
        "offsets": {
          "start": 22,
          "end": 27
        },
        "syntax": {
          "word": "拽讬砖讜谉",
          "dep_head_idx": 3,
          "dep_func": "flat:name",
          "dep_head": "讗驻专讬诐"
        },
        "seg": [
          "拽讬砖讜谉"
        ],
        "lex": "拽讬砖讜谉",
        "morph": {
          "token": "拽讬砖讜谉",
          "pos": "PROPN",
          "feats": {},
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "讗转",
        "offsets": {
          "start": 28,
          "end": 30
        },
        "syntax": {
          "word": "讗转",
          "dep_head_idx": 6,
          "dep_func": "case:acc",
          "dep_head": "诇讬诪讜讚讬讜"
        },
        "seg": [
          "讗转"
        ],
        "lex": "讗转",
        "morph": {
          "token": "讗转",
          "pos": "ADP",
          "feats": {},
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "诇讬诪讜讚讬讜",
        "offsets": {
          "start": 31,
          "end": 38
        },
        "syntax": {
          "word": "诇讬诪讜讚讬讜",
          "dep_head_idx": 2,
          "dep_func": "obj",
          "dep_head": "讛砖诇讬诐"
        },
        "seg": [
          "诇讬诪讜讚讬讜"
        ],
        "lex": "诇讬诪讜讚",
        "morph": {
          "token": "诇讬诪讜讚讬讜",
          "pos": "NOUN",
          "feats": {
            "Gender": "Masc",
            "Number": "Plur"
          },
          "prefixes": [],
          "suffix": "ADP_PRON",
          "suffix_feats": {
            "Gender": "Masc",
            "Number": "Sing",
            "Person": "3"
          }
        }
      },
      {
        "token": "讘驻讬住讜诇",
        "offsets": {
          "start": 39,
          "end": 45
        },
        "syntax": {
          "word": "讘驻讬住讜诇",
          "dep_head_idx": 6,
          "dep_func": "nmod",
          "dep_head": "诇讬诪讜讚讬讜"
        },
        "seg": [
          "讘",
          "驻讬住讜诇"
        ],
        "lex": "驻讬住讜诇",
        "morph": {
          "token": "讘驻讬住讜诇",
          "pos": "NOUN",
          "feats": {
            "Gender": "Masc",
            "Number": "Sing"
          },
          "prefixes": [
            "ADP"
          ],
          "suffix": false
        }
      },
      {
        "token": "诪转讻转",
        "offsets": {
          "start": 46,
          "end": 50
        },
        "syntax": {
          "word": "诪转讻转",
          "dep_head_idx": 7,
          "dep_func": "compound:smixut",
          "dep_head": "讘驻讬住讜诇"
        },
        "seg": [
          "诪转讻转"
        ],
        "lex": "诪转讻转",
        "morph": {
          "token": "诪转讻转",
          "pos": "NOUN",
          "feats": {
            "Gender": "Fem",
            "Number": "Sing"
          },
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "讜讘转讜诇讚讜转",
        "offsets": {
          "start": 51,
          "end": 59
        },
        "syntax": {
          "word": "讜讘转讜诇讚讜转",
          "dep_head_idx": 7,
          "dep_func": "conj",
          "dep_head": "讘驻讬住讜诇"
        },
        "seg": [
          "讜讘",
          "转讜诇讚讜转"
        ],
        "lex": "转讜诇讚讛",
        "morph": {
          "token": "讜讘转讜诇讚讜转",
          "pos": "NOUN",
          "feats": {
            "Gender": "Fem",
            "Number": "Plur"
          },
          "prefixes": [
            "CCONJ",
            "ADP"
          ],
          "suffix": false
        }
      },
      {
        "token": "讛讗诪谞讜转",
        "offsets": {
          "start": 60,
          "end": 66
        },
        "syntax": {
          "word": "讛讗诪谞讜转",
          "dep_head_idx": 9,
          "dep_func": "compound:smixut",
          "dep_head": "讜讘转讜诇讚讜转"
        },
        "seg": [
          "讛",
          "讗诪谞讜转"
        ],
        "lex": "讗讜诪谞讜转",
        "morph": {
          "token": "讛讗诪谞讜转",
          "pos": "NOUN",
          "feats": {
            "Gender": "Fem",
            "Number": "Sing"
          },
          "prefixes": [
            "DET"
          ],
          "suffix": false
        }
      },
      {
        "token": "讜讛讞诇",
        "offsets": {
          "start": 67,
          "end": 71
        },
        "syntax": {
          "word": "讜讛讞诇",
          "dep_head_idx": 2,
          "dep_func": "conj",
          "dep_head": "讛砖诇讬诐"
        },
        "seg": [
          "讜",
          "讛讞诇"
        ],
        "lex": "讛讞诇",
        "morph": {
          "token": "讜讛讞诇",
          "pos": "VERB",
          "feats": {
            "Gender": "Masc",
            "Number": "Sing",
            "Person": "3",
            "Tense": "Past"
          },
          "prefixes": [
            "CCONJ"
          ],
          "suffix": false
        }
      },
      {
        "token": "诇驻专住诐",
        "offsets": {
          "start": 72,
          "end": 77
        },
        "syntax": {
          "word": "诇驻专住诐",
          "dep_head_idx": 11,
          "dep_func": "xcomp",
          "dep_head": "讜讛讞诇"
        },
        "seg": [
          "诇驻专住诐"
        ],
        "lex": "驻专住诐",
        "morph": {
          "token": "诇驻专住诐",
          "pos": "VERB",
          "feats": {},
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "诪讗诪专讬诐",
        "offsets": {
          "start": 78,
          "end": 84
        },
        "syntax": {
          "word": "诪讗诪专讬诐",
          "dep_head_idx": 12,
          "dep_func": "obj",
          "dep_head": "诇驻专住诐"
        },
        "seg": [
          "诪讗诪专讬诐"
        ],
        "lex": "诪讗诪专",
        "morph": {
          "token": "诪讗诪专讬诐",
          "pos": "NOUN",
          "feats": {
            "Gender": "Masc",
            "Number": "Plur"
          },
          "prefixes": [],
          "suffix": false
        }
      },
      {
        "token": "讛讜诪讜专讬住讟讬讬诐",
        "offsets": {
          "start": 85,
          "end": 96
        },
        "syntax": {
          "word": "讛讜诪讜专讬住讟讬讬诐",
          "dep_head_idx": 13,
          "dep_func": "amod",
          "dep_head": "诪讗诪专讬诐"
        },
        "seg": [
          "讛讜诪讜专讬住讟讬讬诐"
        ],
        "lex": "讛讜诪讜专讬住讟讬",
        "morph": {
          "token": "讛讜诪讜专讬住讟讬讬诐",
          "pos": "ADJ",
          "feats": {
            "Gender": "Masc",
            "Number": "Plur"
          },
          "prefixes": [],
          "suffix": false
        }
      }
    ],
    "root_idx": 2,
    "ner_entities": [
      {
        "phrase": "1948",
        "label": "TIMEX",
        "start": 5,
        "end": 9,
        "token_start": 1,
        "token_end": 1
      },
      {
        "phrase": "讗驻专讬诐 拽讬砖讜谉",
        "label": "PER",
        "start": 16,
        "end": 27,
        "token_start": 3,
        "token_end": 4
      }
    ]
  }
]
```

You can also choose to get your response in UD format:

```python
sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 诇讬诪讜讚讬讜 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
print(model.predict([sentence], tokenizer, output_style='ud')) 
```

Results:
```json
[
  [
    "# sent_id = 1",
    "# text = 讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 诇讬诪讜讚讬讜 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐",
    "1-2\t讘砖谞转\t_\t_\t_\t_\t_\t_\t_\t_",
    "1\t讘\t讘\tADP\tADP\t_\t2\tcase\t_\t_",
    "2\t砖谞转\t砖谞讛\tNOUN\tNOUN\tGender=Fem|Number=Sing\t4\tobl\t_\t_",
    "3\t1948\t1948\tNUM\tNUM\t\t2\tcompound:smixut\t_\t_",
    "4\t讛砖诇讬诐\t讛砖诇讬诐\tVERB\tVERB\tGender=Masc|Number=Sing|Person=3|Tense=Past\t0\troot\t_\t_",
    "5\t讗驻专讬诐\t讗驻专讬诐\tPROPN\tPROPN\t\t4\tnsubj\t_\t_",
    "6\t拽讬砖讜谉\t拽讬砖讜谉\tPROPN\tPROPN\t\t5\tflat:name\t_\t_",
    "7\t讗转\t讗转\tADP\tADP\t\t8\tcase:acc\t_\t_",
    "8-10\t诇讬诪讜讚讬讜\t_\t_\t_\t_\t_\t_\t_\t_",
    "8\t诇讬诪讜讚_\t诇讬诪讜讚\tNOUN\tNOUN\tGender=Masc|Number=Plur\t4\tobj\t_\t_",
    "9\t_砖诇_\t砖诇\tADP\tADP\t_\t10\tcase\t_\t_",
    "10\t_讛讜讗\t讛讜讗\tPRON\tPRON\tGender=Masc|Number=Sing|Person=3\t8\tnmod:poss\t_\t_",
    "11-12\t讘驻讬住讜诇\t_\t_\t_\t_\t_\t_\t_\t_",
    "11\t讘\t讘\tADP\tADP\t_\t12\tcase\t_\t_",
    "12\t驻讬住讜诇\t驻讬住讜诇\tNOUN\tNOUN\tGender=Masc|Number=Sing\t8\tnmod\t_\t_",
    "13\t诪转讻转\t诪转讻转\tNOUN\tNOUN\tGender=Fem|Number=Sing\t12\tcompound:smixut\t_\t_",
    "14-16\t讜讘转讜诇讚讜转\t_\t_\t_\t_\t_\t_\t_\t_",
    "14\t讜\t讜\tCCONJ\tCCONJ\t_\t16\tcc\t_\t_",
    "15\t讘\t讘\tADP\tADP\t_\t16\tcase\t_\t_",
    "16\t转讜诇讚讜转\t转讜诇讚讛\tNOUN\tNOUN\tGender=Fem|Number=Plur\t12\tconj\t_\t_",
    "17-18\t讛讗诪谞讜转\t_\t_\t_\t_\t_\t_\t_\t_",
    "17\t讛\t讛\tDET\tDET\t_\t18\tdet\t_\t_",
    "18\t讗诪谞讜转\t讗讜诪谞讜转\tNOUN\tNOUN\tGender=Fem|Number=Sing\t16\tcompound:smixut\t_\t_",
    "19-20\t讜讛讞诇\t_\t_\t_\t_\t_\t_\t_\t_",
    "19\t讜\t讜\tCCONJ\tCCONJ\t_\t20\tcc\t_\t_",
    "20\t讛讞诇\t讛讞诇\tVERB\tVERB\tGender=Masc|Number=Sing|Person=3|Tense=Past\t4\tconj\t_\t_",
    "21\t诇驻专住诐\t驻专住诐\tVERB\tVERB\t\t20\txcomp\t_\t_",
    "22\t诪讗诪专讬诐\t诪讗诪专\tNOUN\tNOUN\tGender=Masc|Number=Plur\t21\tobj\t_\t_",
    "23\t讛讜诪讜专讬住讟讬讬诐\t讛讜诪讜专讬住讟讬\tADJ\tADJ\tGender=Masc|Number=Plur\t22\tamod\t_\t_"
  ]
]
```

## Citation

If you use DictaBERT-large-parse in your research, please cite ```MRL Parsing without Tears: The Case of Hebrew```

**BibTeX:**

```bibtex
@misc{shmidman2024mrl,
      title={MRL Parsing Without Tears: The Case of Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel and Reut Tsarfaty},
      year={2024},
      eprint={2403.06970},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```


## License

Shield: [![CC BY 4.0][cc-by-shield]][cc-by]

This work is licensed under a
[Creative Commons Attribution 4.0 International License][cc-by].

[![CC BY 4.0][cc-by-image]][cc-by]

[cc-by]: http://creativecommons.org/licenses/by/4.0/
[cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
[cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg