--- license: gemma library_name: peft tags: - trl - reward-trainer - generated_from_trainer base_model: google/gemma-2b metrics: - accuracy model-index: - name: RM-harmless_harmless_contrast_loraR64_20000_gemma2b_lr1e-06_bs2_g4 results: [] --- # RM-harmless_harmless_contrast_loraR64_20000_gemma2b_lr1e-06_bs2_g4 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6606 - Accuracy: 0.6115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.693 | 1.0 | 2250 | 0.7084 | 0.5645 | | 0.6394 | 2.0 | 4500 | 0.6606 | 0.6115 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1