--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer datasets: - offenseval_2020 metrics: - accuracy model-index: - name: ArabertHateSpeech results: - task: name: Text Classification type: text-classification dataset: name: offenseval_2020 type: offenseval_2020 config: ar split: test args: ar metrics: - name: Accuracy type: accuracy value: 0.9255610290093049 --- # ArabertHateSpeech This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the offenseval_2020 dataset. It achieves the following results on the evaluation set: - Loss: 0.3259 - Accuracy: 0.9256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1895 | 1.0 | 980 | 0.4345 | 0.9206 | | 0.1472 | 2.0 | 1960 | 0.3537 | 0.9228 | | 0.1365 | 3.0 | 2940 | 0.3259 | 0.9256 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3