--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer datasets: - offenseval_2020 metrics: - accuracy - f1 - precision - recall model-index: - name: ArabertHateSpeech results: - task: name: Text Classification type: text-classification dataset: name: offenseval_2020 type: offenseval_2020 config: ar split: test args: ar metrics: - name: Accuracy type: accuracy value: 0.9425287356321839 - name: F1 type: f1 value: 0.8543689320388349 - name: Precision type: precision value: 0.875 - name: Recall type: recall value: 0.8346883468834688 --- # ArabertHateSpeech This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the offenseval_2020 dataset. It achieves the following results on the evaluation set: - Loss: 0.2500 - Accuracy: 0.9425 - F1: 0.8544 - Precision: 0.875 - Recall: 0.8347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 490 | 0.1377 | 0.9321 | 0.8263 | 0.8551 | 0.7995 | | 0.1418 | 2.0 | 980 | 0.0967 | 0.9321 | 0.8121 | 0.9210 | 0.7263 | | 0.0898 | 3.0 | 1470 | 0.1082 | 0.9442 | 0.8517 | 0.9185 | 0.7940 | | 0.0595 | 4.0 | 1960 | 0.1530 | 0.9338 | 0.8358 | 0.8370 | 0.8347 | | 0.0405 | 5.0 | 2450 | 0.1559 | 0.9442 | 0.8579 | 0.8825 | 0.8347 | | 0.0194 | 6.0 | 2940 | 0.2175 | 0.9398 | 0.8541 | 0.8364 | 0.8726 | | 0.0153 | 7.0 | 3430 | 0.1994 | 0.9392 | 0.8452 | 0.8707 | 0.8211 | | 0.0102 | 8.0 | 3920 | 0.2154 | 0.9403 | 0.8541 | 0.8439 | 0.8645 | | 0.0093 | 9.0 | 4410 | 0.2296 | 0.9409 | 0.8470 | 0.8872 | 0.8103 | | 0.0047 | 10.0 | 4900 | 0.2406 | 0.9420 | 0.8524 | 0.8768 | 0.8293 | | 0.0038 | 11.0 | 5390 | 0.2530 | 0.9436 | 0.8591 | 0.8674 | 0.8509 | | 0.0051 | 12.0 | 5880 | 0.2500 | 0.9425 | 0.8544 | 0.875 | 0.8347 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3