--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: google/mt5-large model-index: - name: mt5_emotion_multi results: [] --- # mt5_emotion_multi This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3993 - Accuracy: 0.901 - Precision: 0.9037 - Recall: 0.901 - F1: 0.9008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.4 | 50 | 1.6030 | 0.405 | 0.2816 | 0.405 | 0.3089 | | No log | 0.8 | 100 | 1.3838 | 0.5 | 0.5244 | 0.5 | 0.3826 | | 1.5266 | 1.2 | 150 | 1.1754 | 0.535 | 0.6592 | 0.535 | 0.4998 | | 1.5266 | 1.6 | 200 | 1.0208 | 0.645 | 0.7211 | 0.645 | 0.6155 | | 0.7436 | 2.0 | 250 | 0.7959 | 0.735 | 0.8247 | 0.735 | 0.7121 | | 0.7436 | 2.4 | 300 | 0.6869 | 0.79 | 0.8289 | 0.79 | 0.7871 | | 0.7436 | 2.8 | 350 | 0.6828 | 0.805 | 0.8335 | 0.805 | 0.7983 | | 0.2185 | 3.2 | 400 | 1.0537 | 0.75 | 0.8211 | 0.75 | 0.7343 | | 0.2185 | 3.6 | 450 | 0.5383 | 0.85 | 0.8587 | 0.85 | 0.8474 | | 0.1285 | 4.0 | 500 | 0.9033 | 0.795 | 0.8512 | 0.795 | 0.7851 | | 0.1285 | 4.4 | 550 | 1.1142 | 0.755 | 0.8272 | 0.755 | 0.7371 | | 0.1285 | 4.8 | 600 | 1.0917 | 0.77 | 0.8302 | 0.77 | 0.7640 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2