Hossein-NK
commited on
Commit
•
b08551c
1
Parent(s):
950d5e7
Upload Tweet_Financial_News_Classification.ipynb
Browse files
Tweet_Financial_News_Classification.ipynb
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"accelerator": "TPU"
|
16 |
+
},
|
17 |
+
"cells": [
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"source": [
|
21 |
+
"import warnings\n",
|
22 |
+
"warnings.filterwarnings('ignore')\n",
|
23 |
+
"\n",
|
24 |
+
"import transformers\n",
|
25 |
+
"transformers_version = transformers.__version__\n",
|
26 |
+
"\n",
|
27 |
+
"if transformers_version > '4.31.1':\n",
|
28 |
+
" !pip uninstall transformers\n",
|
29 |
+
" !pip install transformers==4.31\n",
|
30 |
+
"else:\n",
|
31 |
+
" print(\"transformers version:\", transformers.__version__)"
|
32 |
+
],
|
33 |
+
"metadata": {
|
34 |
+
"id": "2RcFPIqQJ6CY",
|
35 |
+
"colab": {
|
36 |
+
"base_uri": "https://localhost:8080/"
|
37 |
+
},
|
38 |
+
"outputId": "8030dedf-b9f5-4687-ef87-1c5a4d8ee9b9"
|
39 |
+
},
|
40 |
+
"execution_count": 1,
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"output_type": "stream",
|
44 |
+
"name": "stdout",
|
45 |
+
"text": [
|
46 |
+
"Found existing installation: transformers 4.31.0\n",
|
47 |
+
"Uninstalling transformers-4.31.0:\n",
|
48 |
+
" Would remove:\n",
|
49 |
+
" /usr/local/bin/transformers-cli\n",
|
50 |
+
" /usr/local/lib/python3.10/dist-packages/transformers-4.31.0.dist-info/*\n",
|
51 |
+
" /usr/local/lib/python3.10/dist-packages/transformers/*\n",
|
52 |
+
"Proceed (Y/n)? n\n",
|
53 |
+
"\u001b[33mWARNING: Ignoring invalid distribution -ransformers (/usr/local/lib/python3.10/dist-packages)\u001b[0m\u001b[33m\n",
|
54 |
+
"\u001b[0mRequirement already satisfied: transformers==4.31 in /usr/local/lib/python3.10/dist-packages (4.31.0)\n",
|
55 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (3.13.4)\n",
|
56 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (0.20.3)\n",
|
57 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (1.25.2)\n",
|
58 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (24.0)\n",
|
59 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (6.0.1)\n",
|
60 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (2023.12.25)\n",
|
61 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (2.31.0)\n",
|
62 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (0.13.3)\n",
|
63 |
+
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (0.4.3)\n",
|
64 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers==4.31) (4.66.2)\n",
|
65 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers==4.31) (2023.6.0)\n",
|
66 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers==4.31) (4.11.0)\n",
|
67 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.31) (3.3.2)\n",
|
68 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.31) (3.7)\n",
|
69 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.31) (2.0.7)\n",
|
70 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.31) (2024.2.2)\n",
|
71 |
+
"\u001b[33mWARNING: Ignoring invalid distribution -ransformers (/usr/local/lib/python3.10/dist-packages)\u001b[0m\u001b[33m\n",
|
72 |
+
"\u001b[0m"
|
73 |
+
]
|
74 |
+
}
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"source": [
|
80 |
+
"import tensorflow as tf\n",
|
81 |
+
"print(\"TensorFlow version:\", tf.__version__)\n",
|
82 |
+
"\n",
|
83 |
+
"import keras\n",
|
84 |
+
"print(\"Keras version:\", keras.__version__)"
|
85 |
+
],
|
86 |
+
"metadata": {
|
87 |
+
"colab": {
|
88 |
+
"base_uri": "https://localhost:8080/"
|
89 |
+
},
|
90 |
+
"id": "b_0OPx3WukSi",
|
91 |
+
"outputId": "0d205aa3-33b4-4a34-9055-d670cc5ac049"
|
92 |
+
},
|
93 |
+
"execution_count": 2,
|
94 |
+
"outputs": [
|
95 |
+
{
|
96 |
+
"output_type": "stream",
|
97 |
+
"name": "stdout",
|
98 |
+
"text": [
|
99 |
+
"TensorFlow version: 2.15.0\n",
|
100 |
+
"Keras version: 2.15.0\n"
|
101 |
+
]
|
102 |
+
}
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 3,
|
108 |
+
"metadata": {
|
109 |
+
"id": "WkzyTQGqzbPS",
|
110 |
+
"colab": {
|
111 |
+
"base_uri": "https://localhost:8080/"
|
112 |
+
},
|
113 |
+
"outputId": "9bc0c671-8557-4b3c-a120-0237d7f96253"
|
114 |
+
},
|
115 |
+
"outputs": [
|
116 |
+
{
|
117 |
+
"output_type": "stream",
|
118 |
+
"name": "stdout",
|
119 |
+
"text": [
|
120 |
+
"Mounted at /content/drive\n"
|
121 |
+
]
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"source": [
|
125 |
+
"from google.colab import drive\n",
|
126 |
+
"drive.mount('/content/drive')"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "markdown",
|
131 |
+
"source": [
|
132 |
+
"### Loading the Data ###"
|
133 |
+
],
|
134 |
+
"metadata": {
|
135 |
+
"id": "BKn5EaROLKeX"
|
136 |
+
}
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"source": [
|
141 |
+
"import pandas as pd\n",
|
142 |
+
"\n",
|
143 |
+
"# Load the CSV file in memory\n",
|
144 |
+
"train_path = '/content/drive/MyDrive/dataset/Twitter_Financial_News_Sentiment/train.csv'\n",
|
145 |
+
"test_path = '/content/drive/MyDrive/dataset/Twitter_Financial_News_Sentiment/test.csv'\n",
|
146 |
+
"\n",
|
147 |
+
"train_df = pd.read_csv(train_path, usecols=['text', 'label'])\n",
|
148 |
+
"test_df = pd.read_csv(test_path, usecols=['text', 'label'])"
|
149 |
+
],
|
150 |
+
"metadata": {
|
151 |
+
"id": "QztIz9VOKLuV"
|
152 |
+
},
|
153 |
+
"execution_count": null,
|
154 |
+
"outputs": []
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "markdown",
|
158 |
+
"source": [
|
159 |
+
"Show example"
|
160 |
+
],
|
161 |
+
"metadata": {
|
162 |
+
"id": "hn5ONAwkNeFS"
|
163 |
+
}
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"source": [
|
168 |
+
"train_df.head()"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "zwYzU-dANpJ-"
|
172 |
+
},
|
173 |
+
"execution_count": null,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"source": [
|
178 |
+
"#import matplotlib library\n",
|
179 |
+
"from matplotlib import pyplot as plt\n",
|
180 |
+
"\n",
|
181 |
+
"#Histogram of \"Label\" column in train datset\n",
|
182 |
+
"train_df['label'].plot(kind='hist', title='Label')\n",
|
183 |
+
"plt.gca().spines[['top', 'right']].set_visible(False)"
|
184 |
+
],
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": null,
|
187 |
+
"outputs": [],
|
188 |
+
"metadata": {
|
189 |
+
"id": "2M1XLsAeN2GN"
|
190 |
+
}
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"source": [
|
195 |
+
"test_df.head()"
|
196 |
+
],
|
197 |
+
"metadata": {
|
198 |
+
"id": "g5_oGvo1NvON"
|
199 |
+
},
|
200 |
+
"execution_count": null,
|
201 |
+
"outputs": []
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"source": [
|
206 |
+
"# Pritn theshape of datasets\n",
|
207 |
+
"print(f'train_df shape: {train_df.shape}')\n",
|
208 |
+
"print(f'test_df shape: {test_df.shape}')"
|
209 |
+
],
|
210 |
+
"metadata": {
|
211 |
+
"id": "kCFupI1FQlMF"
|
212 |
+
},
|
213 |
+
"execution_count": null,
|
214 |
+
"outputs": []
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "markdown",
|
218 |
+
"source": [
|
219 |
+
"### Removing the Special Characters ###"
|
220 |
+
],
|
221 |
+
"metadata": {
|
222 |
+
"id": "zRcmc15aSNx6"
|
223 |
+
}
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"source": [
|
228 |
+
"\n",
|
229 |
+
"!pip install text_hammer\n",
|
230 |
+
"\n",
|
231 |
+
"import text_hammer as th\n",
|
232 |
+
"\n",
|
233 |
+
"def text_proccessing(df, col_name):\n",
|
234 |
+
" \"\"\"\n",
|
235 |
+
" Process text data in a DataFrame column by performing the following operations:\n",
|
236 |
+
"\n",
|
237 |
+
" 1. Convert text to lowercase.\n",
|
238 |
+
" 2. Remove emails from the text.\n",
|
239 |
+
" 3. Remove accented characters from the text.\n",
|
240 |
+
" 4. Remove URLs from the text.\n",
|
241 |
+
"\n",
|
242 |
+
" Parameters:\n",
|
243 |
+
" df (DataFrame): Input DataFrame containing text data.\n",
|
244 |
+
" col_name (str): Name of the column in the DataFrame containing text data.\n",
|
245 |
+
"\n",
|
246 |
+
" Returns:\n",
|
247 |
+
" DataFrame: Processed DataFrame with text data after applying the specified operations.\n",
|
248 |
+
" \"\"\"\n",
|
249 |
+
"\n",
|
250 |
+
" # df[col_name] = df[col_name].apply(lambda x:str(x).lower())\n",
|
251 |
+
" df[col_name] = df[col_name].apply(lambda x: th.remove_emails(x))\n",
|
252 |
+
" df[col_name] = df[col_name].apply(lambda x: th.remove_accented_chars(x))\n",
|
253 |
+
" df[col_name] = df[col_name].apply(lambda x: th.remove_urls(x))\n",
|
254 |
+
"\n",
|
255 |
+
" return df\n",
|
256 |
+
"\n",
|
257 |
+
"train_df = text_proccessing(train_df, 'text')\n"
|
258 |
+
],
|
259 |
+
"metadata": {
|
260 |
+
"id": "YEMq7SUiS28e"
|
261 |
+
},
|
262 |
+
"execution_count": null,
|
263 |
+
"outputs": []
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"source": [
|
268 |
+
"# Print the first sample after cleaning data\n",
|
269 |
+
"train_df['text'].iloc[0:10]"
|
270 |
+
],
|
271 |
+
"metadata": {
|
272 |
+
"id": "VD92IEhPZQHm"
|
273 |
+
},
|
274 |
+
"execution_count": null,
|
275 |
+
"outputs": []
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "markdown",
|
279 |
+
"source": [
|
280 |
+
"###Loading PreTrained BERT Model###"
|
281 |
+
],
|
282 |
+
"metadata": {
|
283 |
+
"id": "YfH0H1W6c0Bb"
|
284 |
+
}
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"source": [
|
289 |
+
"from transformers import AutoTokenizer, TFBertModel\n",
|
290 |
+
"tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')\n",
|
291 |
+
"bert = TFBertModel.from_pretrained('bert-base-uncased')\n"
|
292 |
+
],
|
293 |
+
"metadata": {
|
294 |
+
"id": "ejMMzCOecze9"
|
295 |
+
},
|
296 |
+
"execution_count": null,
|
297 |
+
"outputs": []
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"source": [
|
302 |
+
"tokenizer(train_df['text'].iloc[0])"
|
303 |
+
],
|
304 |
+
"metadata": {
|
305 |
+
"id": "PVWkIfE5gLOV"
|
306 |
+
},
|
307 |
+
"execution_count": null,
|
308 |
+
"outputs": []
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"source": [
|
313 |
+
"max_len = max([len(x.split()) for x in train_df.text])\n",
|
314 |
+
"print(f'Max len of tweets: {max_len}')"
|
315 |
+
],
|
316 |
+
"metadata": {
|
317 |
+
"id": "dGANUQVdhHH7"
|
318 |
+
},
|
319 |
+
"execution_count": null,
|
320 |
+
"outputs": []
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"source": [
|
325 |
+
"x_train = tokenizer(\n",
|
326 |
+
" text = train_df.text.tolist(),\n",
|
327 |
+
" padding = True,\n",
|
328 |
+
" max_length= 36,\n",
|
329 |
+
" truncation= True,\n",
|
330 |
+
" return_tensors = 'tf')\n",
|
331 |
+
"\n",
|
332 |
+
"print(x_train)"
|
333 |
+
],
|
334 |
+
"metadata": {
|
335 |
+
"id": "q9b4iDZ0jW5-"
|
336 |
+
},
|
337 |
+
"execution_count": null,
|
338 |
+
"outputs": []
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"cell_type": "code",
|
342 |
+
"source": [
|
343 |
+
"print(x_train['input_ids'].shape)\n",
|
344 |
+
"print(x_train['attention_mask'].shape)"
|
345 |
+
],
|
346 |
+
"metadata": {
|
347 |
+
"id": "PUMeXfO8lgNd"
|
348 |
+
},
|
349 |
+
"execution_count": null,
|
350 |
+
"outputs": []
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"source": [
|
355 |
+
"print(train_df.label.value_counts())"
|
356 |
+
],
|
357 |
+
"metadata": {
|
358 |
+
"id": "RMM1QI3DlpmD"
|
359 |
+
},
|
360 |
+
"execution_count": null,
|
361 |
+
"outputs": []
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"source": [
|
366 |
+
"y_train = train_df.label.values\n",
|
367 |
+
"y_train\n"
|
368 |
+
],
|
369 |
+
"metadata": {
|
370 |
+
"id": "4zFkagLml80z"
|
371 |
+
},
|
372 |
+
"execution_count": null,
|
373 |
+
"outputs": []
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "markdown",
|
377 |
+
"source": [
|
378 |
+
"### Building the Model Architecture ###"
|
379 |
+
],
|
380 |
+
"metadata": {
|
381 |
+
"id": "fFQNe5Cimwxn"
|
382 |
+
}
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"source": [
|
387 |
+
"from keras import layers, Model\n",
|
388 |
+
"\n",
|
389 |
+
"max_length = 36\n",
|
390 |
+
"\n",
|
391 |
+
"input_ids = layers.Input(shape=(max_length,), dtype=tf.int32, name=\"input_ids\")\n",
|
392 |
+
"input_mask = layers.Input(shape=(max_length,), dtype=tf.int32, name=\"attention_mask\")\n",
|
393 |
+
"\n",
|
394 |
+
"embeddings = bert(input_ids,attention_mask = input_mask)[1] #(0 is the last hidden states,1 means pooler_output)\n",
|
395 |
+
"\n",
|
396 |
+
"out = layers.Dropout(0.1)(embeddings)\n",
|
397 |
+
"out = layers.Dense(128, activation='relu')(out)\n",
|
398 |
+
"out = layers.Dropout(0.1)(out)\n",
|
399 |
+
"out = layers.Dense(32,activation = 'relu')(out)\n",
|
400 |
+
"\n",
|
401 |
+
"y = layers.Dense(3,activation = 'softmax')(out)\n",
|
402 |
+
"\n",
|
403 |
+
"model = tf.keras.Model(inputs=[input_ids, input_mask], outputs=y)\n",
|
404 |
+
"model.layers[2].trainable = False"
|
405 |
+
],
|
406 |
+
"metadata": {
|
407 |
+
"id": "DE1XbnVomwMc"
|
408 |
+
},
|
409 |
+
"execution_count": null,
|
410 |
+
"outputs": []
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"source": [
|
415 |
+
"model.summary()"
|
416 |
+
],
|
417 |
+
"metadata": {
|
418 |
+
"id": "GuxGCjYjrTyY"
|
419 |
+
},
|
420 |
+
"execution_count": null,
|
421 |
+
"outputs": []
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "code",
|
425 |
+
"source": [
|
426 |
+
"from keras.optimizers import Adam\n",
|
427 |
+
"\n",
|
428 |
+
"optimizer = Adam(\n",
|
429 |
+
" learning_rate = 6e-06, # this learning rate is for bert model , taken from huggingface website\n",
|
430 |
+
" epsilon=1e-08,\n",
|
431 |
+
" weight_decay=0.01)\n",
|
432 |
+
"\n",
|
433 |
+
"# Compile the model\n",
|
434 |
+
"model.compile(\n",
|
435 |
+
" optimizer = optimizer,\n",
|
436 |
+
" loss = 'sparse_categorical_crossentropy',\n",
|
437 |
+
" metrics = [\"sparse_categorical_accuracy\"])"
|
438 |
+
],
|
439 |
+
"metadata": {
|
440 |
+
"id": "FyyNrAAf7QMP"
|
441 |
+
},
|
442 |
+
"execution_count": null,
|
443 |
+
"outputs": []
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"source": [
|
448 |
+
"train_history = model.fit(\n",
|
449 |
+
" x = {'input_ids':x_train['input_ids'], 'attention_mask':x_train['attention_mask']} ,\n",
|
450 |
+
" y = y_train,\n",
|
451 |
+
" validation_split = 0.1,\n",
|
452 |
+
" epochs= 3,\n",
|
453 |
+
" batch_size= 32)"
|
454 |
+
],
|
455 |
+
"metadata": {
|
456 |
+
"colab": {
|
457 |
+
"base_uri": "https://localhost:8080/"
|
458 |
+
},
|
459 |
+
"id": "bEnttT2rA8Yw",
|
460 |
+
"outputId": "644c03fd-0cc0-40ff-8108-e059e3a4a0dd"
|
461 |
+
},
|
462 |
+
"execution_count": null,
|
463 |
+
"outputs": [
|
464 |
+
{
|
465 |
+
"output_type": "stream",
|
466 |
+
"name": "stdout",
|
467 |
+
"text": [
|
468 |
+
"Epoch 1/3\n",
|
469 |
+
"118/269 [============>.................] - ETA: 10:10 - loss: 0.9140 - sparse_categorical_accuracy: 0.6261"
|
470 |
+
]
|
471 |
+
}
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "markdown",
|
476 |
+
"source": [
|
477 |
+
"#### TESTING PHASE\n",
|
478 |
+
"on this phase we will make predictions out of our model"
|
479 |
+
],
|
480 |
+
"metadata": {
|
481 |
+
"id": "hgiDVRwSBtCN"
|
482 |
+
}
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"source": [
|
487 |
+
"x_test = tokenizer(\n",
|
488 |
+
" text = test_df.text.tolist(),\n",
|
489 |
+
" padding= True,\n",
|
490 |
+
" max_length= 36,\n",
|
491 |
+
" truncation = True,\n",
|
492 |
+
" return_tensors= 'tf')"
|
493 |
+
],
|
494 |
+
"metadata": {
|
495 |
+
"id": "xaKYd2PRBySe"
|
496 |
+
},
|
497 |
+
"execution_count": null,
|
498 |
+
"outputs": []
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"cell_type": "code",
|
502 |
+
"source": [
|
503 |
+
"y_test = test_df.label.values\n",
|
504 |
+
"y_test"
|
505 |
+
],
|
506 |
+
"metadata": {
|
507 |
+
"id": "OpvHTg3atflb"
|
508 |
+
},
|
509 |
+
"execution_count": null,
|
510 |
+
"outputs": []
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"cell_type": "code",
|
514 |
+
"source": [
|
515 |
+
"predicted = model.predict({'input_ids':x_test['input_ids'],'attention_mask':x_test['attention_mask']})"
|
516 |
+
],
|
517 |
+
"metadata": {
|
518 |
+
"id": "nWgCdpKvCSWm"
|
519 |
+
},
|
520 |
+
"execution_count": null,
|
521 |
+
"outputs": []
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"cell_type": "code",
|
525 |
+
"source": [
|
526 |
+
"from sklearn.metrics import confusion_matrix\n",
|
527 |
+
"import seaborn as sns\n",
|
528 |
+
"\n",
|
529 |
+
"# Convert the predictions to binary values (0 or 1)\n",
|
530 |
+
"y_pred_binary = [int(round(x[0])) for x in predicted]\n",
|
531 |
+
"\n",
|
532 |
+
"# Generate the confusion matrix\n",
|
533 |
+
"cm = confusion_matrix(test_df['label'], y_pred_binary)\n",
|
534 |
+
"\n",
|
535 |
+
"# Create a heatmap of the confusion matrix\n",
|
536 |
+
"sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\")\n",
|
537 |
+
"plt.xlabel(\"Predicted Label\")\n",
|
538 |
+
"plt.ylabel(\"True Label\")\n",
|
539 |
+
"plt.title(\"Confusion Matrix\")\n",
|
540 |
+
"plt.show()"
|
541 |
+
],
|
542 |
+
"metadata": {
|
543 |
+
"id": "-BICUoNs_8qI"
|
544 |
+
},
|
545 |
+
"execution_count": null,
|
546 |
+
"outputs": []
|
547 |
+
}
|
548 |
+
]
|
549 |
+
}
|