Hrushi commited on
Commit
0ab6c64
1 Parent(s): cc4a4cf

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 284.73 +/- 22.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae2b5aa2a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae2b5aa2b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae2b5aa2b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae2b5aa2c20>", "_build": "<function ActorCriticPolicy._build at 0x7ae2b5aa2cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7ae2b5aa2d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae2b5aa2dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae2b5aa2e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae2b5aa2ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae2b5aa2f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae2b5aa3010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae2b5aa30a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae25aa18dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729275046395814706, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOZmLwBj6M9gKR+vJdEjb7Wc/y8M+EcvQAAAAAAAAAAM6O3PK7Pg7osc4GzqgVbLtwyALspe60zAACAPwAAgD/mShI9OZVaPiCjCL5Dppq+qQ/RvHpKjrwAAAAAAAAAADMzkToUWOK6OkMNO3XciTy5oKu7BYVvPQAAgD8AAIA/ZluqPd6uyT3pYoe9HRB6vhqZ2DtMFAs9AAAAAAAAAAAz4KG878NrPtYixDsgXYy+wcfwPDW8HrwAAAAAAAAAAAC4CjtxTBA/fiSUvSG+y75rx1s5bPhDOwAAAAAAAAAAmpRDvUgpgrp+drax1aB6sBdDBDtaiPwyAACAPwAAgD/Nc4e8HLcivE/iKr0h5Mm80ruUPS/Rpz0AAIA/AACAP5rvBz32tGO6gYIKNM0tBC4W59w57X+YswAAgD8AAIA/7UdGPqkctD8fKA4/ldTjvrJgtj71SGU+AAAAAAAAAAAz+Pg8YR6cO1nyvL0cxoS+KtYHvOoERz0AAAAAAAAAAKIEm75rTBE/nUASPsM54L7rPJq+KzRWPgAAAAAAAAAAMxMsu+vDtT9yLYi+sY/PPmfXRzsYxXY9AAAAAAAAAACApbW9j3R1Pnq6fT7gRo2+gJYXPs0nhz0AAAAAAAAAAID26b1IYPE737QjPX5VjL71ldG9Rtj2vAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFWaekHlfaMAWyUS+GMAXSUR0Cf0/I1tO2zdX2UKGgGR0BwPry+Yc//aAdL0GgIR0Cf1CRA8jiXdX2UKGgGR0BxY8bDMvAXaAdL8mgIR0Cf1DwsGxD9dX2UKGgGR0Bvzzh73PAwaAdL6GgIR0Cf1JVvMr3CdX2UKGgGR0BzK4AeaKDTaAdL3GgIR0Cf1a9Tgl4UdX2UKGgGR0BwKMQRPGhmaAdL3GgIR0Cf1fKSgXdkdX2UKGgGR0Bwb49fTkQxaAdL/2gIR0Cf1yurp7kXdX2UKGgGR0By64jmjj7zaAdL8mgIR0Cf2NlLvkR0dX2UKGgGR0Bv7ZXU6PsBaAdL9mgIR0Cf2iKekHlfdX2UKGgGR0BwibSXt0FKaAdL4WgIR0Cf2oxz7uUmdX2UKGgGR0Bxy5Pacqe9aAdL3GgIR0Cf2yAN5MURdX2UKGgGR0BwDISWZ7XyaAdNBgFoCEdAn9uPBWPtD3V9lChoBkdAc1PPCVKPGWgHS+JoCEdAn9ua2fChvnV9lChoBkdAcGmKIi1RcmgHTQUBaAhHQJ/bpxkupS91fZQoaAZHQHE450r9VFRoB0vvaAhHQJ/cETfzjFR1fZQoaAZHQHB7JVbRne1oB0vYaAhHQJ/cHk/8l5Z1fZQoaAZHQHRVKnJkoWpoB00LAWgIR0Cf3H9+PRzBdX2UKGgGR0BzInfTCtRvaAdL/mgIR0Cf3JUhmoR7dX2UKGgGR0BwEwiQkonbaAdNHQFoCEdAn90Qbp/wzHV9lChoBkdAb3RlijL0SWgHS/BoCEdAn93CbMHKOnV9lChoBkdAcKLnLq2SdWgHS/loCEdAn976t5le4XV9lChoBkdAcLtOUdJaq2gHTU4BaAhHQJ/gElhPTG51fZQoaAZHQHOFMN+b3GpoB0vXaAhHQJ/gPmdRR/F1fZQoaAZHQG8lz3RG+bpoB00FAWgIR0Cf4JZuAI6bdX2UKGgGR0BxVevC/GlzaAdL0GgIR0Cf4KpD/lySdX2UKGgGR0Bzt2Aqd6LPaAdL4mgIR0Cf4XUIcBEKdX2UKGgGR0BxQg3++/QCaAdNAwFoCEdAn+G451eSjnV9lChoBkdAcVuwoLG7z2gHTQMBaAhHQJ/icJhOP/91fZQoaAZHQHCAdqcmShdoB00GAWgIR0Cf4nle4TbndX2UKGgGR0BxoEnRb8m8aAdL42gIR0Cf4oJA+pwTdX2UKGgGR0Bx3C5f+jubaAdL32gIR0Cf4oFYMfA9dX2UKGgGR0ByXqUJOWSmaAdNCQFoCEdAn+MQ7o0Q9XV9lChoBkdAcpNiMHbAUWgHTREBaAhHQJ/jOGh24d91fZQoaAZHQHD2Z35eqrBoB0vuaAhHQJ/jdTdcjaB1fZQoaAZHQHLANSydFv1oB0vtaAhHQJ/kLK/20zF1fZQoaAZHQHDsKs2eg+RoB0vUaAhHQJ/kpeSjgyd1fZQoaAZHQHIsQJw84gloB0vqaAhHQJ/3wH6dlNF1fZQoaAZHQHA4v24/eLxoB0vwaAhHQJ/4SdmQKa51fZQoaAZHQHLVLPppvgpoB00GAWgIR0Cf+F4+KTB7dX2UKGgGR0ByC+H2ys0YaAdL9GgIR0Cf+HeHBUJfdX2UKGgGR0Bx+3g75mAcaAdL6WgIR0Cf+OtknTiLdX2UKGgGR0Bt5UK1G9YfaAdL2WgIR0Cf+V9X9zfadX2UKGgGR0BzSg2DQJHBaAdL92gIR0Cf+YDtw71adX2UKGgGR0By3PpHI6sAaAdL4GgIR0Cf+ZfywwCbdX2UKGgGR0ByzCEVWS2ZaAdL9GgIR0Cf+haEi+tbdX2UKGgGR0BvJEWykbgkaAdL52gIR0Cf+nTAWSEEdX2UKGgGR0BwvRuYQarFaAdL/GgIR0Cf+s+EytV8dX2UKGgGR0Bv/kvPC2tuaAdL22gIR0Cf+wb/wRXfdX2UKGgGR0BwY/AuZkTYaAdL12gIR0Cf+3kXDWK/dX2UKGgGR0BxIQf1YhdMaAdNGgFoCEdAn/vlyaNMoXV9lChoBkdAUhduNxVAA2gHS4loCEdAn/y5a/yoXXV9lChoBkdAbl+5+6RQrWgHS/VoCEdAn/4UIcBEKHV9lChoBkdAcAnnNxEORWgHS+RoCEdAn/5RK6FuenV9lChoBkdAcKHCAtnPFGgHS+9oCEdAn/5xJd0JW3V9lChoBkdAb8UnUDuBtmgHS/JoCEdAn/6Xi3ocJnV9lChoBkdAcT3RUWEbpGgHS/RoCEdAn/8vX9R77nV9lChoBkdAbzjwiqyWzGgHS+ZoCEdAn/+H1FpfyHV9lChoBkdAci21oxpL3GgHTQwBaAhHQKAAN4gRsdl1fZQoaAZHQHIeoR7JGONoB0v2aAhHQKAAQMYMvyt1fZQoaAZHQHIkNmL9/BpoB0vlaAhHQKAAaw4bS7Z1fZQoaAZHQHC7Y2bXpW5oB00AAWgIR0CgAJHEdeY2dX2UKGgGR0BjsifDk2gnaAdN6ANoCEdAoAC1Frl/6XV9lChoBkdAct/dFOO802gHTQIBaAhHQKAA35j6N2l1fZQoaAZHQHMEA+MZP2xoB00DAWgIR0CgARLftQbddX2UKGgGR0BwsASoOx0NaAdNAwFoCEdAoAFJm5DqnnV9lChoBkdAb5aobXHzYmgHS89oCEdAoAGic9W6snV9lChoBkdAcVY0rK/202gHTQ0BaAhHQKAB6gqVhTh1fZQoaAZHQHAIRUzbeuVoB0vkaAhHQKACR2+PBBR1fZQoaAZHQG8S1k+X7choB0vsaAhHQKACirK/2011fZQoaAZHQHAjdpEhJRRoB00EAWgIR0CgAs0+s5n2dX2UKGgGR0BwSMqz7di2aAdL7mgIR0CgAwQjlgc+dX2UKGgGR0Byo9cTrVvuaAdL9mgIR0CgA19dE9dNdX2UKGgGR0BxysdilSCOaAdL6WgIR0CgBEwU5+6RdX2UKGgGR0BwC6PPszEaaAdNDAFoCEdAoASDn1WbPXV9lChoBkdAcf+fq5byH2gHTQABaAhHQKAEiMpgCwN1fZQoaAZHQHMA//vOQhhoB00WAWgIR0CgBK4Lb5/LdX2UKGgGR0BzEqYgJTl1aAdL0GgIR0CgBLjhky1vdX2UKGgGR0BOMiLVFx4qaAdLmWgIR0CgBNdyT6i1dX2UKGgGR0Bxh79l2/zraAdL/GgIR0CgBO+xwAEMdX2UKGgGR0BykBlMAWBSaAdL9mgIR0CgBRNet0V8dX2UKGgGR0Bw8OzWwu/UaAdL2WgIR0CgBbE8RtgsdX2UKGgGR0BzToSJ0nw5aAdNHQFoCEdAoAZqIUJv53V9lChoBkdAcgLn7Hhjv2gHTQkBaAhHQKAHRHy3CsR1fZQoaAZHQHHHTtG/etVoB0v7aAhHQKAHRLIxQBR1fZQoaAZHQFNK7ALy+YdoB0ugaAhHQKAHijWTX8R1fZQoaAZHQHHm3aBZpztoB0v/aAhHQKAHmqHXVb11fZQoaAZHQHBwZzT4L1FoB0v4aAhHQKAHsWznied1fZQoaAZHQHMDuqebutxoB0v6aAhHQKAIGpn6Eal1fZQoaAZHQHLwGRigCfZoB0v3aAhHQKAIxw3o9s91fZQoaAZHQF2d0WdmQKdoB03oA2gIR0CgCNtiH6/JdX2UKGgGR0BxLghbGFSLaAdL4mgIR0CgCNwSamXPdX2UKGgGR0BwqvqAz544aAdL62gIR0CgCOMk6cRUdX2UKGgGR0BwCcTxoZhsaAdL9WgIR0CgCPjuKGcndX2UKGgGR0ByG8nWrfcfaAdL/2gIR0CgCQDUmUnpdX2UKGgGR0BuHQ/s3Q2NaAdL6WgIR0CgCRHXd0q6dX2UKGgGR0ByRSW2PT5PaAdNAwFoCEdAoAk7DuSfUXV9lChoBkdAcNy9U0elsWgHS+ZoCEdAoAljiVB2OnV9lChoBkdAcPH0w8GLUGgHS99oCEdAoAm4O2AoX3V9lChoBkdAcAoDjR2KVWgHS+JoCEdAoAo/9ehPCXV9lChoBkdAcdO6xgRbr2gHTQMBaAhHQKAKp5wfhdd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc926c927787ca90c7de0bd8e0f19c40fb1c0e0411e6b978915a46ca9320c79
3
+ size 147928
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae2b5aa2a70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae2b5aa2b00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae2b5aa2b90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae2b5aa2c20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ae2b5aa2cb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ae2b5aa2d40>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae2b5aa2dd0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae2b5aa2e60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ae2b5aa2ef0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae2b5aa2f80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae2b5aa3010>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae2b5aa30a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ae25aa18dc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1729275046395814706,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOZmLwBj6M9gKR+vJdEjb7Wc/y8M+EcvQAAAAAAAAAAM6O3PK7Pg7osc4GzqgVbLtwyALspe60zAACAPwAAgD/mShI9OZVaPiCjCL5Dppq+qQ/RvHpKjrwAAAAAAAAAADMzkToUWOK6OkMNO3XciTy5oKu7BYVvPQAAgD8AAIA/ZluqPd6uyT3pYoe9HRB6vhqZ2DtMFAs9AAAAAAAAAAAz4KG878NrPtYixDsgXYy+wcfwPDW8HrwAAAAAAAAAAAC4CjtxTBA/fiSUvSG+y75rx1s5bPhDOwAAAAAAAAAAmpRDvUgpgrp+drax1aB6sBdDBDtaiPwyAACAPwAAgD/Nc4e8HLcivE/iKr0h5Mm80ruUPS/Rpz0AAIA/AACAP5rvBz32tGO6gYIKNM0tBC4W59w57X+YswAAgD8AAIA/7UdGPqkctD8fKA4/ldTjvrJgtj71SGU+AAAAAAAAAAAz+Pg8YR6cO1nyvL0cxoS+KtYHvOoERz0AAAAAAAAAAKIEm75rTBE/nUASPsM54L7rPJq+KzRWPgAAAAAAAAAAMxMsu+vDtT9yLYi+sY/PPmfXRzsYxXY9AAAAAAAAAACApbW9j3R1Pnq6fT7gRo2+gJYXPs0nhz0AAAAAAAAAAID26b1IYPE737QjPX5VjL71ldG9Rtj2vAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFWaekHlfaMAWyUS+GMAXSUR0Cf0/I1tO2zdX2UKGgGR0BwPry+Yc//aAdL0GgIR0Cf1CRA8jiXdX2UKGgGR0BxY8bDMvAXaAdL8mgIR0Cf1DwsGxD9dX2UKGgGR0Bvzzh73PAwaAdL6GgIR0Cf1JVvMr3CdX2UKGgGR0BzK4AeaKDTaAdL3GgIR0Cf1a9Tgl4UdX2UKGgGR0BwKMQRPGhmaAdL3GgIR0Cf1fKSgXdkdX2UKGgGR0Bwb49fTkQxaAdL/2gIR0Cf1yurp7kXdX2UKGgGR0By64jmjj7zaAdL8mgIR0Cf2NlLvkR0dX2UKGgGR0Bv7ZXU6PsBaAdL9mgIR0Cf2iKekHlfdX2UKGgGR0BwibSXt0FKaAdL4WgIR0Cf2oxz7uUmdX2UKGgGR0Bxy5Pacqe9aAdL3GgIR0Cf2yAN5MURdX2UKGgGR0BwDISWZ7XyaAdNBgFoCEdAn9uPBWPtD3V9lChoBkdAc1PPCVKPGWgHS+JoCEdAn9ua2fChvnV9lChoBkdAcGmKIi1RcmgHTQUBaAhHQJ/bpxkupS91fZQoaAZHQHE450r9VFRoB0vvaAhHQJ/cETfzjFR1fZQoaAZHQHB7JVbRne1oB0vYaAhHQJ/cHk/8l5Z1fZQoaAZHQHRVKnJkoWpoB00LAWgIR0Cf3H9+PRzBdX2UKGgGR0BzInfTCtRvaAdL/mgIR0Cf3JUhmoR7dX2UKGgGR0BwEwiQkonbaAdNHQFoCEdAn90Qbp/wzHV9lChoBkdAb3RlijL0SWgHS/BoCEdAn93CbMHKOnV9lChoBkdAcKLnLq2SdWgHS/loCEdAn976t5le4XV9lChoBkdAcLtOUdJaq2gHTU4BaAhHQJ/gElhPTG51fZQoaAZHQHOFMN+b3GpoB0vXaAhHQJ/gPmdRR/F1fZQoaAZHQG8lz3RG+bpoB00FAWgIR0Cf4JZuAI6bdX2UKGgGR0BxVevC/GlzaAdL0GgIR0Cf4KpD/lySdX2UKGgGR0Bzt2Aqd6LPaAdL4mgIR0Cf4XUIcBEKdX2UKGgGR0BxQg3++/QCaAdNAwFoCEdAn+G451eSjnV9lChoBkdAcVuwoLG7z2gHTQMBaAhHQJ/icJhOP/91fZQoaAZHQHCAdqcmShdoB00GAWgIR0Cf4nle4TbndX2UKGgGR0BxoEnRb8m8aAdL42gIR0Cf4oJA+pwTdX2UKGgGR0Bx3C5f+jubaAdL32gIR0Cf4oFYMfA9dX2UKGgGR0ByXqUJOWSmaAdNCQFoCEdAn+MQ7o0Q9XV9lChoBkdAcpNiMHbAUWgHTREBaAhHQJ/jOGh24d91fZQoaAZHQHD2Z35eqrBoB0vuaAhHQJ/jdTdcjaB1fZQoaAZHQHLANSydFv1oB0vtaAhHQJ/kLK/20zF1fZQoaAZHQHDsKs2eg+RoB0vUaAhHQJ/kpeSjgyd1fZQoaAZHQHIsQJw84gloB0vqaAhHQJ/3wH6dlNF1fZQoaAZHQHA4v24/eLxoB0vwaAhHQJ/4SdmQKa51fZQoaAZHQHLVLPppvgpoB00GAWgIR0Cf+F4+KTB7dX2UKGgGR0ByC+H2ys0YaAdL9GgIR0Cf+HeHBUJfdX2UKGgGR0Bx+3g75mAcaAdL6WgIR0Cf+OtknTiLdX2UKGgGR0Bt5UK1G9YfaAdL2WgIR0Cf+V9X9zfadX2UKGgGR0BzSg2DQJHBaAdL92gIR0Cf+YDtw71adX2UKGgGR0By3PpHI6sAaAdL4GgIR0Cf+ZfywwCbdX2UKGgGR0ByzCEVWS2ZaAdL9GgIR0Cf+haEi+tbdX2UKGgGR0BvJEWykbgkaAdL52gIR0Cf+nTAWSEEdX2UKGgGR0BwvRuYQarFaAdL/GgIR0Cf+s+EytV8dX2UKGgGR0Bv/kvPC2tuaAdL22gIR0Cf+wb/wRXfdX2UKGgGR0BwY/AuZkTYaAdL12gIR0Cf+3kXDWK/dX2UKGgGR0BxIQf1YhdMaAdNGgFoCEdAn/vlyaNMoXV9lChoBkdAUhduNxVAA2gHS4loCEdAn/y5a/yoXXV9lChoBkdAbl+5+6RQrWgHS/VoCEdAn/4UIcBEKHV9lChoBkdAcAnnNxEORWgHS+RoCEdAn/5RK6FuenV9lChoBkdAcKHCAtnPFGgHS+9oCEdAn/5xJd0JW3V9lChoBkdAb8UnUDuBtmgHS/JoCEdAn/6Xi3ocJnV9lChoBkdAcT3RUWEbpGgHS/RoCEdAn/8vX9R77nV9lChoBkdAbzjwiqyWzGgHS+ZoCEdAn/+H1FpfyHV9lChoBkdAci21oxpL3GgHTQwBaAhHQKAAN4gRsdl1fZQoaAZHQHIeoR7JGONoB0v2aAhHQKAAQMYMvyt1fZQoaAZHQHIkNmL9/BpoB0vlaAhHQKAAaw4bS7Z1fZQoaAZHQHC7Y2bXpW5oB00AAWgIR0CgAJHEdeY2dX2UKGgGR0BjsifDk2gnaAdN6ANoCEdAoAC1Frl/6XV9lChoBkdAct/dFOO802gHTQIBaAhHQKAA35j6N2l1fZQoaAZHQHMEA+MZP2xoB00DAWgIR0CgARLftQbddX2UKGgGR0BwsASoOx0NaAdNAwFoCEdAoAFJm5DqnnV9lChoBkdAb5aobXHzYmgHS89oCEdAoAGic9W6snV9lChoBkdAcVY0rK/202gHTQ0BaAhHQKAB6gqVhTh1fZQoaAZHQHAIRUzbeuVoB0vkaAhHQKACR2+PBBR1fZQoaAZHQG8S1k+X7choB0vsaAhHQKACirK/2011fZQoaAZHQHAjdpEhJRRoB00EAWgIR0CgAs0+s5n2dX2UKGgGR0BwSMqz7di2aAdL7mgIR0CgAwQjlgc+dX2UKGgGR0Byo9cTrVvuaAdL9mgIR0CgA19dE9dNdX2UKGgGR0BxysdilSCOaAdL6WgIR0CgBEwU5+6RdX2UKGgGR0BwC6PPszEaaAdNDAFoCEdAoASDn1WbPXV9lChoBkdAcf+fq5byH2gHTQABaAhHQKAEiMpgCwN1fZQoaAZHQHMA//vOQhhoB00WAWgIR0CgBK4Lb5/LdX2UKGgGR0BzEqYgJTl1aAdL0GgIR0CgBLjhky1vdX2UKGgGR0BOMiLVFx4qaAdLmWgIR0CgBNdyT6i1dX2UKGgGR0Bxh79l2/zraAdL/GgIR0CgBO+xwAEMdX2UKGgGR0BykBlMAWBSaAdL9mgIR0CgBRNet0V8dX2UKGgGR0Bw8OzWwu/UaAdL2WgIR0CgBbE8RtgsdX2UKGgGR0BzToSJ0nw5aAdNHQFoCEdAoAZqIUJv53V9lChoBkdAcgLn7Hhjv2gHTQkBaAhHQKAHRHy3CsR1fZQoaAZHQHHHTtG/etVoB0v7aAhHQKAHRLIxQBR1fZQoaAZHQFNK7ALy+YdoB0ugaAhHQKAHijWTX8R1fZQoaAZHQHHm3aBZpztoB0v/aAhHQKAHmqHXVb11fZQoaAZHQHBwZzT4L1FoB0v4aAhHQKAHsWznied1fZQoaAZHQHMDuqebutxoB0v6aAhHQKAIGpn6Eal1fZQoaAZHQHLwGRigCfZoB0v3aAhHQKAIxw3o9s91fZQoaAZHQF2d0WdmQKdoB03oA2gIR0CgCNtiH6/JdX2UKGgGR0BxLghbGFSLaAdL4mgIR0CgCNwSamXPdX2UKGgGR0BwqvqAz544aAdL62gIR0CgCOMk6cRUdX2UKGgGR0BwCcTxoZhsaAdL9WgIR0CgCPjuKGcndX2UKGgGR0ByG8nWrfcfaAdL/2gIR0CgCQDUmUnpdX2UKGgGR0BuHQ/s3Q2NaAdL6WgIR0CgCRHXd0q6dX2UKGgGR0ByRSW2PT5PaAdNAwFoCEdAoAk7DuSfUXV9lChoBkdAcNy9U0elsWgHS+ZoCEdAoAljiVB2OnV9lChoBkdAcPH0w8GLUGgHS99oCEdAoAm4O2AoX3V9lChoBkdAcAoDjR2KVWgHS+JoCEdAoAo/9ehPCXV9lChoBkdAcdO6xgRbr2gHTQMBaAhHQKAKp5wfhdd1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 492,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe99e45409473f1daaf0e7aa36c321529c1e7b361b3ec2a64d5bc6d105deb7e3
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d98aa63a2e334dce307ac29e2948382ecb7c582bc0f9f72d1b695f9d649c157
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 284.7318247974134, "std_reward": 22.539757438048337, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-18T18:53:13.291695"}