Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 284.73 +/- 22.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae2b5aa2a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae2b5aa2b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae2b5aa2b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae2b5aa2c20>", "_build": "<function ActorCriticPolicy._build at 0x7ae2b5aa2cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7ae2b5aa2d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae2b5aa2dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae2b5aa2e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae2b5aa2ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae2b5aa2f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae2b5aa3010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae2b5aa30a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae25aa18dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729275046395814706, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOZmLwBj6M9gKR+vJdEjb7Wc/y8M+EcvQAAAAAAAAAAM6O3PK7Pg7osc4GzqgVbLtwyALspe60zAACAPwAAgD/mShI9OZVaPiCjCL5Dppq+qQ/RvHpKjrwAAAAAAAAAADMzkToUWOK6OkMNO3XciTy5oKu7BYVvPQAAgD8AAIA/ZluqPd6uyT3pYoe9HRB6vhqZ2DtMFAs9AAAAAAAAAAAz4KG878NrPtYixDsgXYy+wcfwPDW8HrwAAAAAAAAAAAC4CjtxTBA/fiSUvSG+y75rx1s5bPhDOwAAAAAAAAAAmpRDvUgpgrp+drax1aB6sBdDBDtaiPwyAACAPwAAgD/Nc4e8HLcivE/iKr0h5Mm80ruUPS/Rpz0AAIA/AACAP5rvBz32tGO6gYIKNM0tBC4W59w57X+YswAAgD8AAIA/7UdGPqkctD8fKA4/ldTjvrJgtj71SGU+AAAAAAAAAAAz+Pg8YR6cO1nyvL0cxoS+KtYHvOoERz0AAAAAAAAAAKIEm75rTBE/nUASPsM54L7rPJq+KzRWPgAAAAAAAAAAMxMsu+vDtT9yLYi+sY/PPmfXRzsYxXY9AAAAAAAAAACApbW9j3R1Pnq6fT7gRo2+gJYXPs0nhz0AAAAAAAAAAID26b1IYPE737QjPX5VjL71ldG9Rtj2vAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFWaekHlfaMAWyUS+GMAXSUR0Cf0/I1tO2zdX2UKGgGR0BwPry+Yc//aAdL0GgIR0Cf1CRA8jiXdX2UKGgGR0BxY8bDMvAXaAdL8mgIR0Cf1DwsGxD9dX2UKGgGR0Bvzzh73PAwaAdL6GgIR0Cf1JVvMr3CdX2UKGgGR0BzK4AeaKDTaAdL3GgIR0Cf1a9Tgl4UdX2UKGgGR0BwKMQRPGhmaAdL3GgIR0Cf1fKSgXdkdX2UKGgGR0Bwb49fTkQxaAdL/2gIR0Cf1yurp7kXdX2UKGgGR0By64jmjj7zaAdL8mgIR0Cf2NlLvkR0dX2UKGgGR0Bv7ZXU6PsBaAdL9mgIR0Cf2iKekHlfdX2UKGgGR0BwibSXt0FKaAdL4WgIR0Cf2oxz7uUmdX2UKGgGR0Bxy5Pacqe9aAdL3GgIR0Cf2yAN5MURdX2UKGgGR0BwDISWZ7XyaAdNBgFoCEdAn9uPBWPtD3V9lChoBkdAc1PPCVKPGWgHS+JoCEdAn9ua2fChvnV9lChoBkdAcGmKIi1RcmgHTQUBaAhHQJ/bpxkupS91fZQoaAZHQHE450r9VFRoB0vvaAhHQJ/cETfzjFR1fZQoaAZHQHB7JVbRne1oB0vYaAhHQJ/cHk/8l5Z1fZQoaAZHQHRVKnJkoWpoB00LAWgIR0Cf3H9+PRzBdX2UKGgGR0BzInfTCtRvaAdL/mgIR0Cf3JUhmoR7dX2UKGgGR0BwEwiQkonbaAdNHQFoCEdAn90Qbp/wzHV9lChoBkdAb3RlijL0SWgHS/BoCEdAn93CbMHKOnV9lChoBkdAcKLnLq2SdWgHS/loCEdAn976t5le4XV9lChoBkdAcLtOUdJaq2gHTU4BaAhHQJ/gElhPTG51fZQoaAZHQHOFMN+b3GpoB0vXaAhHQJ/gPmdRR/F1fZQoaAZHQG8lz3RG+bpoB00FAWgIR0Cf4JZuAI6bdX2UKGgGR0BxVevC/GlzaAdL0GgIR0Cf4KpD/lySdX2UKGgGR0Bzt2Aqd6LPaAdL4mgIR0Cf4XUIcBEKdX2UKGgGR0BxQg3++/QCaAdNAwFoCEdAn+G451eSjnV9lChoBkdAcVuwoLG7z2gHTQMBaAhHQJ/icJhOP/91fZQoaAZHQHCAdqcmShdoB00GAWgIR0Cf4nle4TbndX2UKGgGR0BxoEnRb8m8aAdL42gIR0Cf4oJA+pwTdX2UKGgGR0Bx3C5f+jubaAdL32gIR0Cf4oFYMfA9dX2UKGgGR0ByXqUJOWSmaAdNCQFoCEdAn+MQ7o0Q9XV9lChoBkdAcpNiMHbAUWgHTREBaAhHQJ/jOGh24d91fZQoaAZHQHD2Z35eqrBoB0vuaAhHQJ/jdTdcjaB1fZQoaAZHQHLANSydFv1oB0vtaAhHQJ/kLK/20zF1fZQoaAZHQHDsKs2eg+RoB0vUaAhHQJ/kpeSjgyd1fZQoaAZHQHIsQJw84gloB0vqaAhHQJ/3wH6dlNF1fZQoaAZHQHA4v24/eLxoB0vwaAhHQJ/4SdmQKa51fZQoaAZHQHLVLPppvgpoB00GAWgIR0Cf+F4+KTB7dX2UKGgGR0ByC+H2ys0YaAdL9GgIR0Cf+HeHBUJfdX2UKGgGR0Bx+3g75mAcaAdL6WgIR0Cf+OtknTiLdX2UKGgGR0Bt5UK1G9YfaAdL2WgIR0Cf+V9X9zfadX2UKGgGR0BzSg2DQJHBaAdL92gIR0Cf+YDtw71adX2UKGgGR0By3PpHI6sAaAdL4GgIR0Cf+ZfywwCbdX2UKGgGR0ByzCEVWS2ZaAdL9GgIR0Cf+haEi+tbdX2UKGgGR0BvJEWykbgkaAdL52gIR0Cf+nTAWSEEdX2UKGgGR0BwvRuYQarFaAdL/GgIR0Cf+s+EytV8dX2UKGgGR0Bv/kvPC2tuaAdL22gIR0Cf+wb/wRXfdX2UKGgGR0BwY/AuZkTYaAdL12gIR0Cf+3kXDWK/dX2UKGgGR0BxIQf1YhdMaAdNGgFoCEdAn/vlyaNMoXV9lChoBkdAUhduNxVAA2gHS4loCEdAn/y5a/yoXXV9lChoBkdAbl+5+6RQrWgHS/VoCEdAn/4UIcBEKHV9lChoBkdAcAnnNxEORWgHS+RoCEdAn/5RK6FuenV9lChoBkdAcKHCAtnPFGgHS+9oCEdAn/5xJd0JW3V9lChoBkdAb8UnUDuBtmgHS/JoCEdAn/6Xi3ocJnV9lChoBkdAcT3RUWEbpGgHS/RoCEdAn/8vX9R77nV9lChoBkdAbzjwiqyWzGgHS+ZoCEdAn/+H1FpfyHV9lChoBkdAci21oxpL3GgHTQwBaAhHQKAAN4gRsdl1fZQoaAZHQHIeoR7JGONoB0v2aAhHQKAAQMYMvyt1fZQoaAZHQHIkNmL9/BpoB0vlaAhHQKAAaw4bS7Z1fZQoaAZHQHC7Y2bXpW5oB00AAWgIR0CgAJHEdeY2dX2UKGgGR0BjsifDk2gnaAdN6ANoCEdAoAC1Frl/6XV9lChoBkdAct/dFOO802gHTQIBaAhHQKAA35j6N2l1fZQoaAZHQHMEA+MZP2xoB00DAWgIR0CgARLftQbddX2UKGgGR0BwsASoOx0NaAdNAwFoCEdAoAFJm5DqnnV9lChoBkdAb5aobXHzYmgHS89oCEdAoAGic9W6snV9lChoBkdAcVY0rK/202gHTQ0BaAhHQKAB6gqVhTh1fZQoaAZHQHAIRUzbeuVoB0vkaAhHQKACR2+PBBR1fZQoaAZHQG8S1k+X7choB0vsaAhHQKACirK/2011fZQoaAZHQHAjdpEhJRRoB00EAWgIR0CgAs0+s5n2dX2UKGgGR0BwSMqz7di2aAdL7mgIR0CgAwQjlgc+dX2UKGgGR0Byo9cTrVvuaAdL9mgIR0CgA19dE9dNdX2UKGgGR0BxysdilSCOaAdL6WgIR0CgBEwU5+6RdX2UKGgGR0BwC6PPszEaaAdNDAFoCEdAoASDn1WbPXV9lChoBkdAcf+fq5byH2gHTQABaAhHQKAEiMpgCwN1fZQoaAZHQHMA//vOQhhoB00WAWgIR0CgBK4Lb5/LdX2UKGgGR0BzEqYgJTl1aAdL0GgIR0CgBLjhky1vdX2UKGgGR0BOMiLVFx4qaAdLmWgIR0CgBNdyT6i1dX2UKGgGR0Bxh79l2/zraAdL/GgIR0CgBO+xwAEMdX2UKGgGR0BykBlMAWBSaAdL9mgIR0CgBRNet0V8dX2UKGgGR0Bw8OzWwu/UaAdL2WgIR0CgBbE8RtgsdX2UKGgGR0BzToSJ0nw5aAdNHQFoCEdAoAZqIUJv53V9lChoBkdAcgLn7Hhjv2gHTQkBaAhHQKAHRHy3CsR1fZQoaAZHQHHHTtG/etVoB0v7aAhHQKAHRLIxQBR1fZQoaAZHQFNK7ALy+YdoB0ugaAhHQKAHijWTX8R1fZQoaAZHQHHm3aBZpztoB0v/aAhHQKAHmqHXVb11fZQoaAZHQHBwZzT4L1FoB0v4aAhHQKAHsWznied1fZQoaAZHQHMDuqebutxoB0v6aAhHQKAIGpn6Eal1fZQoaAZHQHLwGRigCfZoB0v3aAhHQKAIxw3o9s91fZQoaAZHQF2d0WdmQKdoB03oA2gIR0CgCNtiH6/JdX2UKGgGR0BxLghbGFSLaAdL4mgIR0CgCNwSamXPdX2UKGgGR0BwqvqAz544aAdL62gIR0CgCOMk6cRUdX2UKGgGR0BwCcTxoZhsaAdL9WgIR0CgCPjuKGcndX2UKGgGR0ByG8nWrfcfaAdL/2gIR0CgCQDUmUnpdX2UKGgGR0BuHQ/s3Q2NaAdL6WgIR0CgCRHXd0q6dX2UKGgGR0ByRSW2PT5PaAdNAwFoCEdAoAk7DuSfUXV9lChoBkdAcNy9U0elsWgHS+ZoCEdAoAljiVB2OnV9lChoBkdAcPH0w8GLUGgHS99oCEdAoAm4O2AoX3V9lChoBkdAcAoDjR2KVWgHS+JoCEdAoAo/9ehPCXV9lChoBkdAcdO6xgRbr2gHTQMBaAhHQKAKp5wfhdd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dc926c927787ca90c7de0bd8e0f19c40fb1c0e0411e6b978915a46ca9320c79
|
3 |
+
size 147928
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ae2b5aa2a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae2b5aa2b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae2b5aa2b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae2b5aa2c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ae2b5aa2cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ae2b5aa2d40>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae2b5aa2dd0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae2b5aa2e60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ae2b5aa2ef0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae2b5aa2f80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae2b5aa3010>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae2b5aa30a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ae25aa18dc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1729275046395814706,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOZmLwBj6M9gKR+vJdEjb7Wc/y8M+EcvQAAAAAAAAAAM6O3PK7Pg7osc4GzqgVbLtwyALspe60zAACAPwAAgD/mShI9OZVaPiCjCL5Dppq+qQ/RvHpKjrwAAAAAAAAAADMzkToUWOK6OkMNO3XciTy5oKu7BYVvPQAAgD8AAIA/ZluqPd6uyT3pYoe9HRB6vhqZ2DtMFAs9AAAAAAAAAAAz4KG878NrPtYixDsgXYy+wcfwPDW8HrwAAAAAAAAAAAC4CjtxTBA/fiSUvSG+y75rx1s5bPhDOwAAAAAAAAAAmpRDvUgpgrp+drax1aB6sBdDBDtaiPwyAACAPwAAgD/Nc4e8HLcivE/iKr0h5Mm80ruUPS/Rpz0AAIA/AACAP5rvBz32tGO6gYIKNM0tBC4W59w57X+YswAAgD8AAIA/7UdGPqkctD8fKA4/ldTjvrJgtj71SGU+AAAAAAAAAAAz+Pg8YR6cO1nyvL0cxoS+KtYHvOoERz0AAAAAAAAAAKIEm75rTBE/nUASPsM54L7rPJq+KzRWPgAAAAAAAAAAMxMsu+vDtT9yLYi+sY/PPmfXRzsYxXY9AAAAAAAAAACApbW9j3R1Pnq6fT7gRo2+gJYXPs0nhz0AAAAAAAAAAID26b1IYPE737QjPX5VjL71ldG9Rtj2vAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFWaekHlfaMAWyUS+GMAXSUR0Cf0/I1tO2zdX2UKGgGR0BwPry+Yc//aAdL0GgIR0Cf1CRA8jiXdX2UKGgGR0BxY8bDMvAXaAdL8mgIR0Cf1DwsGxD9dX2UKGgGR0Bvzzh73PAwaAdL6GgIR0Cf1JVvMr3CdX2UKGgGR0BzK4AeaKDTaAdL3GgIR0Cf1a9Tgl4UdX2UKGgGR0BwKMQRPGhmaAdL3GgIR0Cf1fKSgXdkdX2UKGgGR0Bwb49fTkQxaAdL/2gIR0Cf1yurp7kXdX2UKGgGR0By64jmjj7zaAdL8mgIR0Cf2NlLvkR0dX2UKGgGR0Bv7ZXU6PsBaAdL9mgIR0Cf2iKekHlfdX2UKGgGR0BwibSXt0FKaAdL4WgIR0Cf2oxz7uUmdX2UKGgGR0Bxy5Pacqe9aAdL3GgIR0Cf2yAN5MURdX2UKGgGR0BwDISWZ7XyaAdNBgFoCEdAn9uPBWPtD3V9lChoBkdAc1PPCVKPGWgHS+JoCEdAn9ua2fChvnV9lChoBkdAcGmKIi1RcmgHTQUBaAhHQJ/bpxkupS91fZQoaAZHQHE450r9VFRoB0vvaAhHQJ/cETfzjFR1fZQoaAZHQHB7JVbRne1oB0vYaAhHQJ/cHk/8l5Z1fZQoaAZHQHRVKnJkoWpoB00LAWgIR0Cf3H9+PRzBdX2UKGgGR0BzInfTCtRvaAdL/mgIR0Cf3JUhmoR7dX2UKGgGR0BwEwiQkonbaAdNHQFoCEdAn90Qbp/wzHV9lChoBkdAb3RlijL0SWgHS/BoCEdAn93CbMHKOnV9lChoBkdAcKLnLq2SdWgHS/loCEdAn976t5le4XV9lChoBkdAcLtOUdJaq2gHTU4BaAhHQJ/gElhPTG51fZQoaAZHQHOFMN+b3GpoB0vXaAhHQJ/gPmdRR/F1fZQoaAZHQG8lz3RG+bpoB00FAWgIR0Cf4JZuAI6bdX2UKGgGR0BxVevC/GlzaAdL0GgIR0Cf4KpD/lySdX2UKGgGR0Bzt2Aqd6LPaAdL4mgIR0Cf4XUIcBEKdX2UKGgGR0BxQg3++/QCaAdNAwFoCEdAn+G451eSjnV9lChoBkdAcVuwoLG7z2gHTQMBaAhHQJ/icJhOP/91fZQoaAZHQHCAdqcmShdoB00GAWgIR0Cf4nle4TbndX2UKGgGR0BxoEnRb8m8aAdL42gIR0Cf4oJA+pwTdX2UKGgGR0Bx3C5f+jubaAdL32gIR0Cf4oFYMfA9dX2UKGgGR0ByXqUJOWSmaAdNCQFoCEdAn+MQ7o0Q9XV9lChoBkdAcpNiMHbAUWgHTREBaAhHQJ/jOGh24d91fZQoaAZHQHD2Z35eqrBoB0vuaAhHQJ/jdTdcjaB1fZQoaAZHQHLANSydFv1oB0vtaAhHQJ/kLK/20zF1fZQoaAZHQHDsKs2eg+RoB0vUaAhHQJ/kpeSjgyd1fZQoaAZHQHIsQJw84gloB0vqaAhHQJ/3wH6dlNF1fZQoaAZHQHA4v24/eLxoB0vwaAhHQJ/4SdmQKa51fZQoaAZHQHLVLPppvgpoB00GAWgIR0Cf+F4+KTB7dX2UKGgGR0ByC+H2ys0YaAdL9GgIR0Cf+HeHBUJfdX2UKGgGR0Bx+3g75mAcaAdL6WgIR0Cf+OtknTiLdX2UKGgGR0Bt5UK1G9YfaAdL2WgIR0Cf+V9X9zfadX2UKGgGR0BzSg2DQJHBaAdL92gIR0Cf+YDtw71adX2UKGgGR0By3PpHI6sAaAdL4GgIR0Cf+ZfywwCbdX2UKGgGR0ByzCEVWS2ZaAdL9GgIR0Cf+haEi+tbdX2UKGgGR0BvJEWykbgkaAdL52gIR0Cf+nTAWSEEdX2UKGgGR0BwvRuYQarFaAdL/GgIR0Cf+s+EytV8dX2UKGgGR0Bv/kvPC2tuaAdL22gIR0Cf+wb/wRXfdX2UKGgGR0BwY/AuZkTYaAdL12gIR0Cf+3kXDWK/dX2UKGgGR0BxIQf1YhdMaAdNGgFoCEdAn/vlyaNMoXV9lChoBkdAUhduNxVAA2gHS4loCEdAn/y5a/yoXXV9lChoBkdAbl+5+6RQrWgHS/VoCEdAn/4UIcBEKHV9lChoBkdAcAnnNxEORWgHS+RoCEdAn/5RK6FuenV9lChoBkdAcKHCAtnPFGgHS+9oCEdAn/5xJd0JW3V9lChoBkdAb8UnUDuBtmgHS/JoCEdAn/6Xi3ocJnV9lChoBkdAcT3RUWEbpGgHS/RoCEdAn/8vX9R77nV9lChoBkdAbzjwiqyWzGgHS+ZoCEdAn/+H1FpfyHV9lChoBkdAci21oxpL3GgHTQwBaAhHQKAAN4gRsdl1fZQoaAZHQHIeoR7JGONoB0v2aAhHQKAAQMYMvyt1fZQoaAZHQHIkNmL9/BpoB0vlaAhHQKAAaw4bS7Z1fZQoaAZHQHC7Y2bXpW5oB00AAWgIR0CgAJHEdeY2dX2UKGgGR0BjsifDk2gnaAdN6ANoCEdAoAC1Frl/6XV9lChoBkdAct/dFOO802gHTQIBaAhHQKAA35j6N2l1fZQoaAZHQHMEA+MZP2xoB00DAWgIR0CgARLftQbddX2UKGgGR0BwsASoOx0NaAdNAwFoCEdAoAFJm5DqnnV9lChoBkdAb5aobXHzYmgHS89oCEdAoAGic9W6snV9lChoBkdAcVY0rK/202gHTQ0BaAhHQKAB6gqVhTh1fZQoaAZHQHAIRUzbeuVoB0vkaAhHQKACR2+PBBR1fZQoaAZHQG8S1k+X7choB0vsaAhHQKACirK/2011fZQoaAZHQHAjdpEhJRRoB00EAWgIR0CgAs0+s5n2dX2UKGgGR0BwSMqz7di2aAdL7mgIR0CgAwQjlgc+dX2UKGgGR0Byo9cTrVvuaAdL9mgIR0CgA19dE9dNdX2UKGgGR0BxysdilSCOaAdL6WgIR0CgBEwU5+6RdX2UKGgGR0BwC6PPszEaaAdNDAFoCEdAoASDn1WbPXV9lChoBkdAcf+fq5byH2gHTQABaAhHQKAEiMpgCwN1fZQoaAZHQHMA//vOQhhoB00WAWgIR0CgBK4Lb5/LdX2UKGgGR0BzEqYgJTl1aAdL0GgIR0CgBLjhky1vdX2UKGgGR0BOMiLVFx4qaAdLmWgIR0CgBNdyT6i1dX2UKGgGR0Bxh79l2/zraAdL/GgIR0CgBO+xwAEMdX2UKGgGR0BykBlMAWBSaAdL9mgIR0CgBRNet0V8dX2UKGgGR0Bw8OzWwu/UaAdL2WgIR0CgBbE8RtgsdX2UKGgGR0BzToSJ0nw5aAdNHQFoCEdAoAZqIUJv53V9lChoBkdAcgLn7Hhjv2gHTQkBaAhHQKAHRHy3CsR1fZQoaAZHQHHHTtG/etVoB0v7aAhHQKAHRLIxQBR1fZQoaAZHQFNK7ALy+YdoB0ugaAhHQKAHijWTX8R1fZQoaAZHQHHm3aBZpztoB0v/aAhHQKAHmqHXVb11fZQoaAZHQHBwZzT4L1FoB0v4aAhHQKAHsWznied1fZQoaAZHQHMDuqebutxoB0v6aAhHQKAIGpn6Eal1fZQoaAZHQHLwGRigCfZoB0v3aAhHQKAIxw3o9s91fZQoaAZHQF2d0WdmQKdoB03oA2gIR0CgCNtiH6/JdX2UKGgGR0BxLghbGFSLaAdL4mgIR0CgCNwSamXPdX2UKGgGR0BwqvqAz544aAdL62gIR0CgCOMk6cRUdX2UKGgGR0BwCcTxoZhsaAdL9WgIR0CgCPjuKGcndX2UKGgGR0ByG8nWrfcfaAdL/2gIR0CgCQDUmUnpdX2UKGgGR0BuHQ/s3Q2NaAdL6WgIR0CgCRHXd0q6dX2UKGgGR0ByRSW2PT5PaAdNAwFoCEdAoAk7DuSfUXV9lChoBkdAcNy9U0elsWgHS+ZoCEdAoAljiVB2OnV9lChoBkdAcPH0w8GLUGgHS99oCEdAoAm4O2AoX3V9lChoBkdAcAoDjR2KVWgHS+JoCEdAoAo/9ehPCXV9lChoBkdAcdO6xgRbr2gHTQMBaAhHQKAKp5wfhdd1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 492,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe99e45409473f1daaf0e7aa36c321529c1e7b361b3ec2a64d5bc6d105deb7e3
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d98aa63a2e334dce307ac29e2948382ecb7c582bc0f9f72d1b695f9d649c157
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (161 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 284.7318247974134, "std_reward": 22.539757438048337, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-18T18:53:13.291695"}
|