Upload PPo LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.37 +/- 12.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff35ed4be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff35ed4beb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff35ed4bf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff35ed30040>", "_build": "<function ActorCriticPolicy._build at 0x7ff35ed300d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff35ed30160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff35ed301f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff35ed30280>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff35ed30310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff35ed303a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff35ed30430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff35ed304c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff35ed50280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688360827414772381, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0YSb32pHO6iDijuYaskrS2tpg5gSS7OAAAgD8AAIA/Zuq3vHtkqTnucQY8wahUPC2DEjxOJv07AAAAAAAAgD9mre48KTgzuh4AZTy5eUk8oETcujlGLz0AAIA/AACAP5qLnjxSKNC5T5Q0OmVWpDX43YE7GgRTuQAAgD8AAIA/M9ikPK7HrLgWSVK4R8n8s+yy8TuWnXs3AACAPwAAgD9m2H880p7KuzW5Cj4xdZS9VB8pvWiLfb4AAIA/AACAP2YpKT2P9gG6O+iTuxofBL2/XYY6iPrnPQAAgD8AAAAAADKEPdcDJjrwUTo6JcMJPegnpjsj78o7AACAPwAAgD+A+aU9CodluYZvgztVkuS4RZPKuDCc7LcAAIA/AACAPwAQSjwfAZQ6ecUFPNliajwvjZ+7pZAGPQAAAAAAAAAAM8UKPJlxVz7ludw9pXxKvmeZi7x3m449AAAAAAAAAACaefg8rgeaursD2boPtBe5IelwOwKDAToAAIA/AACAPzPXLT6ECkQ+intUvncbeL5EBWe8ompFPAAAAAAAAAAA5kKKPVL6kjrNCni8QvnKvNjjUjvVyPs8AAAAAAAAAACz4Rw9pJw0OpqUjzxX+pq8sZIGPAYUCD0AAAAAAAAAAKqZpb5QVdE+49phPv8zlr50qJu9qwsgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5nV2aDwpiMAWyUTTYBjAF0lEdApCCMwpON53V9lChoBkdAby0ophF3IWgHTQgBaAhHQKQg7/io86p1fZQoaAZHQG+PrjxTbWVoB01JAWgIR0CkIWie/YapdX2UKGgGR0BwvMBEKE39aAdNPgFoCEdApCHOXC0ngHV9lChoBkdAbVnoIOYplWgHTUgBaAhHQKQrVj5Kvmp1fZQoaAZHQG/3sdtEXtVoB01ZAWgIR0CkLP7VBlcydX2UKGgGR0A/xomois4laAdL2WgIR0CkLTJNj9XLdX2UKGgGR0BwEBJz1bqyaAdNfQFoCEdApC1AYm9g4XV9lChoBkdAcDEXC0ngHmgHTVEBaAhHQKQtiqLCN0h1fZQoaAZHQG2o8z67/XJoB010AWgIR0CkLhvze40/dX2UKGgGR0Bwk1MpPRAsaAdNLQFoCEdApC6GBpYcN3V9lChoBkdAcd1KFqSHM2gHTSUBaAhHQKQul9PUKAt1fZQoaAZHQGyHT2FnIyVoB00WAWgIR0CkLuzsY2sJdX2UKGgGR0BtuJZQpF1CaAdN0wFoCEdApC8+wcHW0HV9lChoBkdAUjgbedkJ8mgHS/hoCEdApDAxKxs2vXV9lChoBkdAcDz4VARkE2gHTVEBaAhHQKQwu8jAzpJ1fZQoaAZHQHGOcnVoYeloB01cAWgIR0CkMMIr4FibdX2UKGgGR0BuCd5MURFraAdNUgFoCEdApDD1ALRa5nV9lChoBkdAcOEBGQSzxGgHTUcBaAhHQKQzW9KVY6p1fZQoaAZHQG9WhYeT3ZhoB00tAWgIR0CkM9Sy2QXAdX2UKGgGR0BxB6G5+YtyaAdNpgFoCEdApDSJSDRMOHV9lChoBkdAcP+4WUKRdWgHTRQBaAhHQKQ1AzOX3QF1fZQoaAZHQHH2eTFERapoB00JAWgIR0CkNeVAJLM+dX2UKGgGR0Buh3ppvgm7aAdNRQFoCEdApDYPwEyLynV9lChoBkdAceBTq0MPSWgHTSgBaAhHQKQ2hWuoxYd1fZQoaAZHQHFvoP5HmRxoB01GAWgIR0CkNqybQTmGdX2UKGgGR0BxadMURFqjaAdNOgFoCEdApDcSwr1/UnV9lChoBkdAcb4bvw3HaWgHTZgBaAhHQKQ3bAYYR/V1fZQoaAZHQEu8LWqcVgxoB0v7aAhHQKQ3fkDp1Rt1fZQoaAZHQHEC4yGi5/doB01UAWgIR0CkN7Ab6xgRdX2UKGgGR0Bvq9QqI7/5aAdNQQFoCEdApDgOs90RvnV9lChoBkdAcDNzUZvUBmgHTSoBaAhHQKQ4DI/7iyZ1fZQoaAZHQG/piTt9hJBoB00wAWgIR0CkOXBaTwDvdX2UKGgGR0ByVHA57w8XaAdNCAJoCEdApDmGskpqh3V9lChoBkdAbsb0DEFW4mgHTWQBaAhHQKQ62uxrzoV1fZQoaAZHQG3vBsyi22JoB009AWgIR0CkO8TQmeDndX2UKGgGR0BwYd6Vt4zKaAdNcAFoCEdApDvEGPgeinV9lChoBkdAbpuB5HEuQWgHTSYBaAhHQKQ8RgF5fMR1fZQoaAZHQHA3ww482aVoB01+AWgIR0CkPHBU70WedX2UKGgGR0BxCO89Oh0yaAdNBQJoCEdApDxyrFOwgXV9lChoBkdAbQ3HcUM5O2gHTRkBaAhHQKQ8gQNkOI91fZQoaAZHQHDslJpWV/toB01DAWgIR0CkPKXe3x4IdX2UKGgGR0BxBXCIk7fYaAdNFAFoCEdApDy2TC+De3V9lChoBkdAcYWSjxkNF2gHTWIBaAhHQKQ8v2HLzPN1fZQoaAZHQG9dlPBSDRNoB006AWgIR0CkPUgvL5h0dX2UKGgGR0BxDUWIoE0SaAdNIwFoCEdApD1zR+jM3nV9lChoBkdAcPIIpH7P6mgHTTEBaAhHQKQ9mz/IbOx1fZQoaAZHQG9e0+kgwGpoB01xAWgIR0CkPh5ha1TjdX2UKGgGR0AV++wkgOjJaAdL72gIR0CkPt/huO0cdX2UKGgGR0BtPS/7BO58aAdNTAFoCEdApD9V1QqI8HV9lChoBkdAbk1HPNVzZGgHTWEBaAhHQKQ/2wSJ0nx1fZQoaAZHQGyHfhddE9doB00uAWgIR0CkSXALJCBxdX2UKGgGR0BZVfzWf9P2aAdN6ANoCEdApGbTPppvgnV9lChoBkdAVr0O6NEPUmgHTegDaAhHQKRm1DKoybh1fZQoaAZHQFoG6XjU/fRoB03oA2gIR0CkaIOCwr1/dX2UKGgGR0BRPgrMC9ytaAdN6ANoCEdApGiXFYMfBHV9lChoBkdAYqmVSn+AE2gHTegDaAhHQKRotF/hESd1fZQoaAZHQFqVCcwxnFpoB03oA2gIR0CkaSA5BC2MdX2UKGgGR0Ba3LBfrrxBaAdN6ANoCEdApGlj212JSHV9lChoBkdAXPy2kSElFGgHTegDaAhHQKRpiir1dxB1fZQoaAZHQF39elKsdT5oB03oA2gIR0CkayR6Ww/xdX2UKGgGR0Bg0q/O+qR2aAdN6ANoCEdApGuszj3mFXV9lChoBkdAYDhHSWqtHWgHTegDaAhHQKRsNDAJswd1fZQoaAZHQF+Iw4bS7XhoB03oA2gIR0CkbYFUIcBEdX2UKGgGR0BWSih8IAwPaAdN6ANoCEdApG8pXhfjTHV9lChoBkdAXxB4RmK64GgHTegDaAhHQKRwGNWluWN1fZQoaAZHQF3ebBoEjgRoB03oA2gIR0CkcNHGbTc7dX2UKGgGR0BhfRVS4vvjaAdN6ANoCEdApHJeLDQ7cXV9lChoBkdAYJ0619fCymgHTegDaAhHQKSZ6gTRIBl1fZQoaAZHQFJ+pJPIn0FoB03oA2gIR0Ckmeq5kK/mdX2UKGgGR0BvfPGMn7YTaAdNrgJoCEdApJpdlGwzL3V9lChoBkdAWaBWT5ftyGgHTegDaAhHQKSbVNr0rbx1fZQoaAZHQGKkkRaouPFoB03oA2gIR0Ckm2KnFYMfdX2UKGgGR0BYrjF+/gzhaAdN6ANoCEdApJt2+/QBxXV9lChoBkdAXYeH31zySWgHTegDaAhHQKSbxWUbDMx1fZQoaAZHQFnmAzpHI6toB03oA2gIR0Ckm/H31zySdX2UKGgGR0BTJM2rGR3eaAdN6ANoCEdApJwK3d9DyHV9lChoBkdAU0FGUfPom2gHTegDaAhHQKSdMsQumJp1fZQoaAZHQFH7LCvX9R9oB03oA2gIR0CknZQvpQk5dX2UKGgGR0BY5e4XoC+2aAdN6ANoCEdApJ3sGs3hoHV9lChoBkdAW6cHTqjaf2gHTegDaAhHQKSe3BP9DQZ1fZQoaAZHQFZY8+RoysVoB03oA2gIR0Ckn/hufmLcdX2UKGgGR0BhjC3CsOoYaAdN6ANoCEdApKCRRGc4HXV9lChoBkdAUzxI+W4Vh2gHTegDaAhHQKShIt03fhx1fZQoaAZHQEyPizcAR05oB03oA2gIR0Ck0276YVqOdX2UKGgGR0Ban+EAYHgQaAdN6ANoCEdApNNwnx8UmHV9lChoBkdATysPMB6rvWgHTegDaAhHQKTUAi9Iwud1fZQoaAZHQFOiy+HrQgNoB03oA2gIR0Ck1SHQY1pCdX2UKGgGR0BbxqpcX3xnaAdN6ANoCEdApNUzAUL2H3V9lChoBkdAUHG7SRbKR2gHTegDaAhHQKTVSk1Mue11fZQoaAZHQFvNxqfvnbJoB03oA2gIR0Ck1aLQXyiFdX2UKGgGR0BN6pDeCTUzaAdN6ANoCEdApNXaxs2vS3V9lChoBkdAUM81m8M/hWgHTegDaAhHQKTV+C0WuYB1fZQoaAZHQE4H6XSjQAxoB03oA2gIR0Ck1y0cGTs6dX2UKGgGR0BcdJlFtsN2aAdN6ANoCEdApNeMqOLiuXV9lChoBkdAXzYaIeo1k2gHTegDaAhHQKTX3ssxwhp1fZQoaAZHQFwjoQ4CIUJoB03oA2gIR0Ck2LHxaxHHdX2UKGgGR0BVvpVsDW9UaAdN6ANoCEdApNmslLOAy3V9lChoBkdAVrVRO1v2oWgHTegDaAhHQKTaOZJCjUN1fZQoaAZHQF1PUDMeOn5oB03oA2gIR0Ck2qbsfJV9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 268, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQPZrLtHn9mfj2dafvop1vAowDaW5jlIoR561LVhAf7EpV3ZFqnJyb3gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRbQ1ij53uRyFgcuah20dinACMA2luY5SKEccD9yomL/KPhTkuGPD5Z74AdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigX+CF2MAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:221c722db9b8c2864d5b052fc985635ff5213ddce4aabb5f9246022a2f27886b
|
3 |
+
size 147236
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff35ed4be20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff35ed4beb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff35ed4bf40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff35ed30040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff35ed300d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff35ed30160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff35ed301f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff35ed30280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff35ed30310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff35ed303a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff35ed30430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff35ed304c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff35ed50280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688360827414772381,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0YSb32pHO6iDijuYaskrS2tpg5gSS7OAAAgD8AAIA/Zuq3vHtkqTnucQY8wahUPC2DEjxOJv07AAAAAAAAgD9mre48KTgzuh4AZTy5eUk8oETcujlGLz0AAIA/AACAP5qLnjxSKNC5T5Q0OmVWpDX43YE7GgRTuQAAgD8AAIA/M9ikPK7HrLgWSVK4R8n8s+yy8TuWnXs3AACAPwAAgD9m2H880p7KuzW5Cj4xdZS9VB8pvWiLfb4AAIA/AACAP2YpKT2P9gG6O+iTuxofBL2/XYY6iPrnPQAAgD8AAAAAADKEPdcDJjrwUTo6JcMJPegnpjsj78o7AACAPwAAgD+A+aU9CodluYZvgztVkuS4RZPKuDCc7LcAAIA/AACAPwAQSjwfAZQ6ecUFPNliajwvjZ+7pZAGPQAAAAAAAAAAM8UKPJlxVz7ludw9pXxKvmeZi7x3m449AAAAAAAAAACaefg8rgeaursD2boPtBe5IelwOwKDAToAAIA/AACAPzPXLT6ECkQ+intUvncbeL5EBWe8ompFPAAAAAAAAAAA5kKKPVL6kjrNCni8QvnKvNjjUjvVyPs8AAAAAAAAAACz4Rw9pJw0OpqUjzxX+pq8sZIGPAYUCD0AAAAAAAAAAKqZpb5QVdE+49phPv8zlr50qJu9qwsgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5nV2aDwpiMAWyUTTYBjAF0lEdApCCMwpON53V9lChoBkdAby0ophF3IWgHTQgBaAhHQKQg7/io86p1fZQoaAZHQG+PrjxTbWVoB01JAWgIR0CkIWie/YapdX2UKGgGR0BwvMBEKE39aAdNPgFoCEdApCHOXC0ngHV9lChoBkdAbVnoIOYplWgHTUgBaAhHQKQrVj5Kvmp1fZQoaAZHQG/3sdtEXtVoB01ZAWgIR0CkLP7VBlcydX2UKGgGR0A/xomois4laAdL2WgIR0CkLTJNj9XLdX2UKGgGR0BwEBJz1bqyaAdNfQFoCEdApC1AYm9g4XV9lChoBkdAcDEXC0ngHmgHTVEBaAhHQKQtiqLCN0h1fZQoaAZHQG2o8z67/XJoB010AWgIR0CkLhvze40/dX2UKGgGR0Bwk1MpPRAsaAdNLQFoCEdApC6GBpYcN3V9lChoBkdAcd1KFqSHM2gHTSUBaAhHQKQul9PUKAt1fZQoaAZHQGyHT2FnIyVoB00WAWgIR0CkLuzsY2sJdX2UKGgGR0BtuJZQpF1CaAdN0wFoCEdApC8+wcHW0HV9lChoBkdAUjgbedkJ8mgHS/hoCEdApDAxKxs2vXV9lChoBkdAcDz4VARkE2gHTVEBaAhHQKQwu8jAzpJ1fZQoaAZHQHGOcnVoYeloB01cAWgIR0CkMMIr4FibdX2UKGgGR0BuCd5MURFraAdNUgFoCEdApDD1ALRa5nV9lChoBkdAcOEBGQSzxGgHTUcBaAhHQKQzW9KVY6p1fZQoaAZHQG9WhYeT3ZhoB00tAWgIR0CkM9Sy2QXAdX2UKGgGR0BxB6G5+YtyaAdNpgFoCEdApDSJSDRMOHV9lChoBkdAcP+4WUKRdWgHTRQBaAhHQKQ1AzOX3QF1fZQoaAZHQHH2eTFERapoB00JAWgIR0CkNeVAJLM+dX2UKGgGR0Buh3ppvgm7aAdNRQFoCEdApDYPwEyLynV9lChoBkdAceBTq0MPSWgHTSgBaAhHQKQ2hWuoxYd1fZQoaAZHQHFvoP5HmRxoB01GAWgIR0CkNqybQTmGdX2UKGgGR0BxadMURFqjaAdNOgFoCEdApDcSwr1/UnV9lChoBkdAcb4bvw3HaWgHTZgBaAhHQKQ3bAYYR/V1fZQoaAZHQEu8LWqcVgxoB0v7aAhHQKQ3fkDp1Rt1fZQoaAZHQHEC4yGi5/doB01UAWgIR0CkN7Ab6xgRdX2UKGgGR0Bvq9QqI7/5aAdNQQFoCEdApDgOs90RvnV9lChoBkdAcDNzUZvUBmgHTSoBaAhHQKQ4DI/7iyZ1fZQoaAZHQG/piTt9hJBoB00wAWgIR0CkOXBaTwDvdX2UKGgGR0ByVHA57w8XaAdNCAJoCEdApDmGskpqh3V9lChoBkdAbsb0DEFW4mgHTWQBaAhHQKQ62uxrzoV1fZQoaAZHQG3vBsyi22JoB009AWgIR0CkO8TQmeDndX2UKGgGR0BwYd6Vt4zKaAdNcAFoCEdApDvEGPgeinV9lChoBkdAbpuB5HEuQWgHTSYBaAhHQKQ8RgF5fMR1fZQoaAZHQHA3ww482aVoB01+AWgIR0CkPHBU70WedX2UKGgGR0BxCO89Oh0yaAdNBQJoCEdApDxyrFOwgXV9lChoBkdAbQ3HcUM5O2gHTRkBaAhHQKQ8gQNkOI91fZQoaAZHQHDslJpWV/toB01DAWgIR0CkPKXe3x4IdX2UKGgGR0BxBXCIk7fYaAdNFAFoCEdApDy2TC+De3V9lChoBkdAcYWSjxkNF2gHTWIBaAhHQKQ8v2HLzPN1fZQoaAZHQG9dlPBSDRNoB006AWgIR0CkPUgvL5h0dX2UKGgGR0BxDUWIoE0SaAdNIwFoCEdApD1zR+jM3nV9lChoBkdAcPIIpH7P6mgHTTEBaAhHQKQ9mz/IbOx1fZQoaAZHQG9e0+kgwGpoB01xAWgIR0CkPh5ha1TjdX2UKGgGR0AV++wkgOjJaAdL72gIR0CkPt/huO0cdX2UKGgGR0BtPS/7BO58aAdNTAFoCEdApD9V1QqI8HV9lChoBkdAbk1HPNVzZGgHTWEBaAhHQKQ/2wSJ0nx1fZQoaAZHQGyHfhddE9doB00uAWgIR0CkSXALJCBxdX2UKGgGR0BZVfzWf9P2aAdN6ANoCEdApGbTPppvgnV9lChoBkdAVr0O6NEPUmgHTegDaAhHQKRm1DKoybh1fZQoaAZHQFoG6XjU/fRoB03oA2gIR0CkaIOCwr1/dX2UKGgGR0BRPgrMC9ytaAdN6ANoCEdApGiXFYMfBHV9lChoBkdAYqmVSn+AE2gHTegDaAhHQKRotF/hESd1fZQoaAZHQFqVCcwxnFpoB03oA2gIR0CkaSA5BC2MdX2UKGgGR0Ba3LBfrrxBaAdN6ANoCEdApGlj212JSHV9lChoBkdAXPy2kSElFGgHTegDaAhHQKRpiir1dxB1fZQoaAZHQF39elKsdT5oB03oA2gIR0CkayR6Ww/xdX2UKGgGR0Bg0q/O+qR2aAdN6ANoCEdApGuszj3mFXV9lChoBkdAYDhHSWqtHWgHTegDaAhHQKRsNDAJswd1fZQoaAZHQF+Iw4bS7XhoB03oA2gIR0CkbYFUIcBEdX2UKGgGR0BWSih8IAwPaAdN6ANoCEdApG8pXhfjTHV9lChoBkdAXxB4RmK64GgHTegDaAhHQKRwGNWluWN1fZQoaAZHQF3ebBoEjgRoB03oA2gIR0CkcNHGbTc7dX2UKGgGR0BhfRVS4vvjaAdN6ANoCEdApHJeLDQ7cXV9lChoBkdAYJ0619fCymgHTegDaAhHQKSZ6gTRIBl1fZQoaAZHQFJ+pJPIn0FoB03oA2gIR0Ckmeq5kK/mdX2UKGgGR0BvfPGMn7YTaAdNrgJoCEdApJpdlGwzL3V9lChoBkdAWaBWT5ftyGgHTegDaAhHQKSbVNr0rbx1fZQoaAZHQGKkkRaouPFoB03oA2gIR0Ckm2KnFYMfdX2UKGgGR0BYrjF+/gzhaAdN6ANoCEdApJt2+/QBxXV9lChoBkdAXYeH31zySWgHTegDaAhHQKSbxWUbDMx1fZQoaAZHQFnmAzpHI6toB03oA2gIR0Ckm/H31zySdX2UKGgGR0BTJM2rGR3eaAdN6ANoCEdApJwK3d9DyHV9lChoBkdAU0FGUfPom2gHTegDaAhHQKSdMsQumJp1fZQoaAZHQFH7LCvX9R9oB03oA2gIR0CknZQvpQk5dX2UKGgGR0BY5e4XoC+2aAdN6ANoCEdApJ3sGs3hoHV9lChoBkdAW6cHTqjaf2gHTegDaAhHQKSe3BP9DQZ1fZQoaAZHQFZY8+RoysVoB03oA2gIR0Ckn/hufmLcdX2UKGgGR0BhjC3CsOoYaAdN6ANoCEdApKCRRGc4HXV9lChoBkdAUzxI+W4Vh2gHTegDaAhHQKShIt03fhx1fZQoaAZHQEyPizcAR05oB03oA2gIR0Ck0276YVqOdX2UKGgGR0Ban+EAYHgQaAdN6ANoCEdApNNwnx8UmHV9lChoBkdATysPMB6rvWgHTegDaAhHQKTUAi9Iwud1fZQoaAZHQFOiy+HrQgNoB03oA2gIR0Ck1SHQY1pCdX2UKGgGR0BbxqpcX3xnaAdN6ANoCEdApNUzAUL2H3V9lChoBkdAUHG7SRbKR2gHTegDaAhHQKTVSk1Mue11fZQoaAZHQFvNxqfvnbJoB03oA2gIR0Ck1aLQXyiFdX2UKGgGR0BN6pDeCTUzaAdN6ANoCEdApNXaxs2vS3V9lChoBkdAUM81m8M/hWgHTegDaAhHQKTV+C0WuYB1fZQoaAZHQE4H6XSjQAxoB03oA2gIR0Ck1y0cGTs6dX2UKGgGR0BcdJlFtsN2aAdN6ANoCEdApNeMqOLiuXV9lChoBkdAXzYaIeo1k2gHTegDaAhHQKTX3ssxwhp1fZQoaAZHQFwjoQ4CIUJoB03oA2gIR0Ck2LHxaxHHdX2UKGgGR0BVvpVsDW9UaAdN6ANoCEdApNmslLOAy3V9lChoBkdAVrVRO1v2oWgHTegDaAhHQKTaOZJCjUN1fZQoaAZHQF1PUDMeOn5oB03oA2gIR0Ck2qbsfJV9dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 268,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQPZrLtHn9mfj2dafvop1vAowDaW5jlIoR561LVhAf7EpV3ZFqnJyb3gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": "Generator(PCG64)"
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRbQ1ij53uRyFgcuah20dinACMA2luY5SKEccD9yomL/KPhTkuGPD5Z74AdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigX+CF2MAHVidWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.9999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4bc391a7290ee2864cc54434c2ac0cb9540b3db5d52b4452855e66a867b2a4a
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2df62d8be540e5a63aaf6bdd6d85ab31d24c7cb996f5545d3a1b55bcf03adb6
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (174 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.3684283556812, "std_reward": 12.552229556725665, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-03T05:38:24.820260"}
|