HueyNemud's picture
update model card README.md
b80b4dd
metadata
tags:
  - generated_from_trainer
model-index:
  - name: icdar23-entrydetector_jointlabelledtext_breaks_indents_left_diff_right_ref
    results: []

icdar23-entrydetector_jointlabelledtext_breaks_indents_left_diff_right_ref

This model is a fine-tuned version of HueyNemud/das22-10-camembert_pretrained on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2611
  • Act: {'precision': 0.7855491329479769, 'recall': 0.8905635648754915, 'f1': 0.8347665847665848, 'number': 1526}
  • Cardinal: {'precision': 0.9609375, 'recall': 0.9624413145539906, 'f1': 0.9616888193901486, 'number': 2556}
  • Cardinal+i-eend: {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 114}
  • Ft: {'precision': 0.3125, 'recall': 0.23809523809523808, 'f1': 0.27027027027027023, 'number': 21}
  • Loc: {'precision': 0.9030707610146862, 'recall': 0.9397054737427063, 'f1': 0.9210239651416122, 'number': 3599}
  • Loc+i-eend: {'precision': 0.9444444444444444, 'recall': 0.3617021276595745, 'f1': 0.5230769230769231, 'number': 47}
  • Per: {'precision': 0.915758896151053, 'recall': 0.9231332357247438, 'f1': 0.919431279620853, 'number': 2732}
  • Per+i-ebegin: {'precision': 0.9938223938223938, 'recall': 0.9877206446661551, 'f1': 0.9907621247113164, 'number': 2606}
  • Titre: {'precision': 0.6972972972972973, 'recall': 0.86, 'f1': 0.7701492537313434, 'number': 150}
  • Overall Precision: 0.9156
  • Overall Recall: 0.9346
  • Overall F1: 0.9250
  • Overall Accuracy: 0.9418

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 15000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.07 300 0.2539 0.8509 0.9103 0.8796 0.9523
0.5632 0.14 600 0.1632 0.9225 0.9305 0.9265 0.9647
0.5632 0.21 900 0.1571 0.9300 0.9345 0.9323 0.9638
0.204 0.29 1200 0.1415 0.9322 0.9399 0.9361 0.9669
0.1626 0.36 1500 0.1331 0.9428 0.9477 0.9452 0.9679
0.1626 0.43 1800 0.1272 0.9384 0.9537 0.9460 0.9679
0.1305 0.5 2100 0.1334 0.9435 0.9513 0.9474 0.9696
0.1305 0.57 2400 0.1199 0.9410 0.9496 0.9452 0.9705
0.1288 0.64 2700 0.1412 0.9401 0.9530 0.9465 0.9685
0.1345 0.72 3000 0.1177 0.9407 0.9534 0.9470 0.9711
0.1345 0.79 3300 0.1191 0.9417 0.9599 0.9507 0.9718
0.1123 0.86 3600 0.1110 0.9472 0.9609 0.9540 0.9746
0.1123 0.93 3900 0.1229 0.9343 0.9462 0.9402 0.9712
0.1047 1.0 4200 0.1032 0.9521 0.9622 0.9571 0.9770
0.0713 1.07 4500 0.1093 0.9343 0.9642 0.9490 0.9746
0.0713 1.14 4800 0.1045 0.9499 0.9609 0.9554 0.9758
0.0674 1.22 5100 0.1287 0.9382 0.9704 0.9541 0.9730
0.0674 1.29 5400 0.0983 0.9520 0.9547 0.9533 0.9743
0.0682 1.36 5700 0.1153 0.9468 0.9611 0.9539 0.9752

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2