File size: 1,205 Bytes
2444fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from transformers import PretrainedConfig
from typing import List
class GCNConfig(PretrainedConfig):
    model_type = "gcn"

    def __init__(
        self,
        input_feature: int=64,
        emb_input: int=20,
        hidden_size: int=64,
        n_layers: int=6,
        num_classes: int=1,

        smiles: List[str] = None,
        processor_class: str = "SmilesProcessor",
        **kwargs,
    ):

        self.input_feature = input_feature        # the dimension of input feature
        self.emb_input = emb_input                # the embedding dimension of input feature
        self.hidden_size = hidden_size            # the hidden size of GCN
        self.n_layers = n_layers                  # the number of GCN layers
        self.num_classes = num_classes            # the number of output classes

        self.smiles = smiles                      # process smiles
        self.processor_class = processor_class

        super().__init__(**kwargs)


if __name__ == "__main__":
    gcn_config = GCNConfig(input_feature=64, emb_input=20, hidden_size=64, n_layers=6, num_classes=1, smiles=["C", "CC", "CCC"], processor_class="SmilesProcessor")
    gcn_config.save_pretrained("custom-gcn")