Huhujingjing commited on
Commit
64fa2ae
1 Parent(s): 2444fad

Upload model

Browse files
Files changed (1) hide show
  1. modeling_gcn.py +41 -35
modeling_gcn.py CHANGED
@@ -1,47 +1,24 @@
1
- from torch_geometric.nn import GCNConv
 
2
  import torch.nn as nn
3
  import torch.nn.functional as F
4
- from torch_scatter import scatter
5
- from transformers import PreTrainedModel
6
- from gcn_model.configuration_gcn import GCNConfig
7
- import torch
8
- from rdkit import Chem
9
- from rdkit.Chem import AllChem
10
- import torch
11
- from torch_geometric.data import Data
12
- import os
13
- from transformers import PretrainedConfig
14
- from typing import List
15
- from torch_geometric.loader import DataLoader
16
  from tqdm import tqdm
17
  import pandas as pd
18
- from transformers import AutoModel
19
- class GCNConfig(PretrainedConfig):
20
- model_type = "gcn"
21
 
22
- def __init__(
23
- self,
24
- input_feature: int=64,
25
- emb_input: int=20,
26
- hidden_size: int=64,
27
- n_layers: int=6,
28
- num_classes: int=1,
29
 
30
- smiles: List[str] = None,
31
- processor_class: str = "SmilesProcessor",
32
- **kwargs,
33
- ):
34
 
35
- self.input_feature = input_feature # the dimension of input feature
36
- self.emb_input = emb_input # the embedding dimension of input feature
37
- self.hidden_size = hidden_size # the hidden size of GCN
38
- self.n_layers = n_layers # the number of GCN layers
39
- self.num_classes = num_classes # the number of output classes
40
 
41
- self.smiles = smiles # process smiles
42
- self.processor_class = processor_class
43
 
44
- super().__init__(**kwargs)
45
  class SmilesDataset(torch.utils.data.Dataset):
46
  def __init__(self, smiles):
47
  self.smiles_list = smiles
@@ -176,6 +153,35 @@ class GCNNet(torch.nn.Module):
176
 
177
  return x.squeeze(-1)
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  class GCNModel(PreTrainedModel):
180
  config_class = GCNConfig
181
 
 
1
+ import os
2
+ import torch
3
  import torch.nn as nn
4
  import torch.nn.functional as F
 
 
 
 
 
 
 
 
 
 
 
 
5
  from tqdm import tqdm
6
  import pandas as pd
7
+ from typing import List
 
 
8
 
9
+ from rdkit import Chem
10
+ from rdkit.Chem import AllChem
 
 
 
 
 
11
 
12
+ from transformers import PretrainedConfig
13
+ from transformers import PreTrainedModel
14
+ from transformers import AutoModel
 
15
 
16
+ from torch_geometric.nn import GCNConv
17
+ from torch_geometric.data import Data
18
+ from torch_geometric.loader import DataLoader
19
+ from torch_scatter import scatter
 
20
 
 
 
21
 
 
22
  class SmilesDataset(torch.utils.data.Dataset):
23
  def __init__(self, smiles):
24
  self.smiles_list = smiles
 
153
 
154
  return x.squeeze(-1)
155
 
156
+
157
+ class GCNConfig(PretrainedConfig):
158
+ model_type = "gcn"
159
+
160
+ def __init__(
161
+ self,
162
+ input_feature: int=64,
163
+ emb_input: int=20,
164
+ hidden_size: int=64,
165
+ n_layers: int=6,
166
+ num_classes: int=1,
167
+
168
+ smiles: List[str] = None,
169
+ processor_class: str = "SmilesProcessor",
170
+ **kwargs,
171
+ ):
172
+
173
+ self.input_feature = input_feature # the dimension of input feature
174
+ self.emb_input = emb_input # the embedding dimension of input feature
175
+ self.hidden_size = hidden_size # the hidden size of GCN
176
+ self.n_layers = n_layers # the number of GCN layers
177
+ self.num_classes = num_classes # the number of output classes
178
+
179
+ self.smiles = smiles # process smiles
180
+ self.processor_class = processor_class
181
+
182
+ super().__init__(**kwargs)
183
+
184
+
185
  class GCNModel(PreTrainedModel):
186
  config_class = GCNConfig
187