ernestum commited on
Commit
08b61dd
1 Parent(s): 111d1f2

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **CartPole-v1**
25
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga HumanCompatibleAI -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga HumanCompatibleAI -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env CartPole-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga HumanCompatibleAI
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('clip_range', 'lin_0.2'),
67
+ ('ent_coef', 0.0),
68
+ ('gae_lambda', 0.8),
69
+ ('gamma', 0.98),
70
+ ('learning_rate', 'lin_0.001'),
71
+ ('n_envs', 8),
72
+ ('n_epochs', 20),
73
+ ('n_steps', 32),
74
+ ('n_timesteps', 100000.0),
75
+ ('policy', 'MlpPolicy'),
76
+ ('normalize', False)])
77
+ ```
78
+
79
+ # Environment Arguments
80
+ ```python
81
+ {'render_mode': 'rgb_array'}
82
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - CartPole-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2623485154
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - lin_0.2
6
+ - - ent_coef
7
+ - 0.0
8
+ - - gae_lambda
9
+ - 0.8
10
+ - - gamma
11
+ - 0.98
12
+ - - learning_rate
13
+ - lin_0.001
14
+ - - n_envs
15
+ - 8
16
+ - - n_epochs
17
+ - 20
18
+ - - n_steps
19
+ - 32
20
+ - - n_timesteps
21
+ - 100000.0
22
+ - - policy
23
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
ppo-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bc70c310a4e48d5695193a20d481540ff2ace5ee7f7fa91283ed656c9a9460c
3
+ size 139331
ppo-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.0a3
ppo-CartPole-v1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7418355ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7418355f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f74182da040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f74182da0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f74182da160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f74182da1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f74182da280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f74182da310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f74182da3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f74182da430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f74182da4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f74182da550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7418340c60>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 100096,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 0,
28
+ "action_noise": null,
29
+ "start_time": 1695118822606160808,
30
+ "learning_rate": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVZgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw5L2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lIwEZnVuY5RNKQFDAgAGlIwOaW5pdGlhbF92YWx1ZV+UhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDkvaG9tZS9tL0RvY3VtZW50cy9DSEFJL3JsLWJhc2VsaW5lczMtem9vL3JsX3pvbzMvdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
33
+ },
34
+ "tensorboard_log": null,
35
+ "_last_obs": null,
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0009600000000000719,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAWOw3ZPEbYXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFjwmMfigkF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BZBIP5HmRvdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWQWv4dp7C3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFl5SpzcRDl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BaWyZfD1oQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWqX8Q7LdN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFqmRujynUF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Baw8+u/1xsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWt8WM0gr6XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFrfyQxN7Bx1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ba3+sYEW69dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAW2AUxmCiAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFwv0PYnOSp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BcUGFWXC0odX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAXGJRoAXEZXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFyDmV7hNud1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bco2/8EV32dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAXKSKAJ9iMHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFyk+Y+jdpJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BdK/8IiTt+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAXfmNVBD5TXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQF43TyauwHJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BeOBAGB4D+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAXm0xHoX9BXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQF5x/hl18st1fZQoaAZHQH9AAAAAAABoB030AWgIR0BecqoVEd/8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAXolSMtK7I3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQF8U3R5TqB51fZQoaAZHQH9AAAAAAABoB030AWgIR0Bf9hsqJ/G3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYBSAy2x6fXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGAUpMQEpy91fZQoaAZHQH9AAAAAAABoB030AWgIR0BgJIL/jsD5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYDGhTwUg0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGAyL876pHZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BgMlB8hLXddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYG1SEUTL4nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGDf4TbnHNp1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bg7/phWo3rdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYPAgcLjPwHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGELB4lhPTJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BhFj7di2DydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYRb1xsEaEXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGEXI5HVf/p1fZQoaAZHQH9AAAAAAABoB030AWgIR0BhVzMFEAo5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYcBBiTdLx3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGHoUEovzvt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bh6dqcmShbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYgZczImw7nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGIItITXarZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BiCWRvFWGRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYgnqv/zasnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGJgoC2c8T11fZQoaAZHQH9AAAAAAABoB030AWgIR0BiyoLqlgtwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYuqIKtxMnXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGLq1UuL7411fZQoaAZHQH9AAAAAAABoB030AWgIR0Bi+uUyHmA9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAYwkvlEJBxHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGMJ1Muez2R1fZQoaAZHQH9AAAAAAABoB030AWgIR0BjCfpMYdhidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAY1NQZ4wAVHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGQttihFmWd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BkPT+rELpidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZD1jQzDXOHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGRa4wIt16p1fZQoaAZHQH9AAAAAAABoB030AWgIR0BkXS2phnandX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZGl9itq59XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGRphZha1Tl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BkpXseGO+7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZRBZEDyOJnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGUxazmfXf91fZQoaAZHQH9AAAAAAABoB030AWgIR0BlMY8B+4LDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZUBsMy8BdXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGVXP420iQl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BlV78UEgW8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZVf3t8eCCnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGWb6vaDf3x1fZQoaAZHQH9AAAAAAABoB030AWgIR0BmAQhdMTN/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZhIKCQLeAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGYf4e1a4c51fZQoaAZHQH9AAAAAAABoB030AWgIR0BmMBaA4GUwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZjyLPUrkKnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGY9dJaq0dB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BmPdke6qbSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZnnapxWDH3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGbnL1uivgZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BnAfEAHVwxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZwIUwi7kGXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGcfF7Uoa1l1fZQoaAZHQH9AAAAAAABoB030AWgIR0BnITVQQ+UydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZyHPE87p3XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGctK+ajN6h1fZQoaAZHQH9AAAAAAABoB030AWgIR0BnaOEEkjX4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZ9t0nw5NoXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGf4ah6By0d1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bn+I9RrJr+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaAjIy0rsjXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGgW7T2FnI11fZQoaAZHQH9AAAAAAABoB030AWgIR0BoF8oF3Y+TdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAaBgowVTJhnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 7820,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True]",
60
+ "bounded_above": "[ True True True True]",
61
+ "_shape": [
62
+ 4
63
+ ],
64
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
65
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
66
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
67
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVugEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCmKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
+ "n": "2",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 32,
81
+ "gamma": 0.98,
82
+ "gae_lambda": 0.8,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 256,
87
+ "n_epochs": 20,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVZgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw5L2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lIwEZnVuY5RNKQFDAgAGlIwOaW5pdGlhbF92YWx1ZV+UhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDkvaG9tZS9tL0RvY3VtZW50cy9DSEFJL3JsLWJhc2VsaW5lczMtem9vL3JsX3pvbzMvdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVZgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw5L2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lIwEZnVuY5RNKQFDAgAGlIwOaW5pdGlhbF92YWx1ZV+UhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDkvaG9tZS9tL0RvY3VtZW50cy9DSEFJL3JsLWJhc2VsaW5lczMtem9vL3JsX3pvbzMvdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5bbd8485411386d16f603d7183b06f0fc195c9a0f6e71574cefec19497656e4
3
+ size 82425
ppo-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1332622cdd6d8b3d87122f5745c0d0fb2f0bb53f7001a32a2d15d968691f2fb
3
+ size 40641
ppo-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cb0b5edddbb6a9758f23d423afad69ca841be8d8bc63d287b01720155832f46
3
+ size 54435
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T12:29:40.188261"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed2618a2eca87839302b2418a9564368dd56e7c37edbbd56099fa713d7148cdb
3
+ size 9515