ernestum commited on
Commit
4970224
1 Parent(s): 14e68c5

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Hopper-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: seals/Hopper-v1
16
+ type: seals/Hopper-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2279.30 +/- 124.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **seals/Hopper-v1**
25
+ This is a trained model of a **SAC** agent playing **seals/Hopper-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env seals/Hopper-v1 -orga HumanCompatibleAI -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env seals/Hopper-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env seals/Hopper-v1 -orga HumanCompatibleAI -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env seals/Hopper-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env seals/Hopper-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env seals/Hopper-v1 -f logs/ -orga HumanCompatibleAI
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('buffer_size', 100000),
67
+ ('gamma', 0.98),
68
+ ('learning_rate', 0.001709807687567946),
69
+ ('learning_starts', 1000),
70
+ ('n_timesteps', 1000000.0),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ {'log_std_init': -1.6829391077276037,
74
+ 'net_arch': [256, 256],
75
+ 'use_sde': False}),
76
+ ('tau', 0.08),
77
+ ('train_freq', 32),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - hyperparams/python/sac.py
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - seals/Hopper-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1098537867
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - buffer_size
5
+ - 100000
6
+ - - gamma
7
+ - 0.98
8
+ - - learning_rate
9
+ - 0.001709807687567946
10
+ - - learning_starts
11
+ - 1000
12
+ - - n_timesteps
13
+ - 1000000.0
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - log_std_init: -1.6829391077276037
18
+ net_arch:
19
+ - 256
20
+ - 256
21
+ use_sde: false
22
+ - - tau
23
+ - 0.08
24
+ - - train_freq
25
+ - 32
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb43a20b57c7eb1215bf45e7495ae2e8f36215890f5d67feb92cab4851820c4
3
+ size 1330807
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2279.2973859, "std_reward": 124.08594365174518, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:51:44.999911"}
sac-seals-Hopper-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae6ad7f94a3baab30637b53a6997e773bb6d8521c26ebca0b2ddc448a53d54fd
3
+ size 3137779
sac-seals-Hopper-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.0a3
sac-seals-Hopper-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfeb91a2497b2c253982d9b7e50e75d36d553d9016c62d9724401fdb3daed35b
3
+ size 571549
sac-seals-Hopper-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1f415ff7285f0c86d4328f459a1ed0b09720c040e8f7ee5ec3aeaa6bfa9ba99
3
+ size 1131513
sac-seals-Hopper-v1/data ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function SACPolicy.__init__ at 0x7faeb6b63700>",
9
+ "_build": "<function SACPolicy._build at 0x7faeb6b63790>",
10
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7faeb6b63820>",
11
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7faeb6b638b0>",
12
+ "make_actor": "<function SACPolicy.make_actor at 0x7faeb6b63940>",
13
+ "make_critic": "<function SACPolicy.make_critic at 0x7faeb6b639d0>",
14
+ "forward": "<function SACPolicy.forward at 0x7faeb6b63a60>",
15
+ "_predict": "<function SACPolicy._predict at 0x7faeb6b63af0>",
16
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7faeb6b63b80>",
17
+ "__abstractmethods__": "frozenset()",
18
+ "_abc_impl": "<_abc_data object at 0x7faeb6b5ab10>"
19
+ },
20
+ "verbose": 1,
21
+ "policy_kwargs": {
22
+ "net_arch": [
23
+ 256,
24
+ 256
25
+ ],
26
+ "log_std_init": -1.6829391077276037,
27
+ "use_sde": false
28
+ },
29
+ "num_timesteps": 1000000,
30
+ "_total_timesteps": 1000000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": 0,
33
+ "action_noise": null,
34
+ "start_time": 1694771152489705476,
35
+ "learning_rate": {
36
+ ":type:": "<class 'function'>",
37
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1wDdAZveNiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
38
+ },
39
+ "tensorboard_log": null,
40
+ "_last_obs": null,
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAEp1+0gm/jBA2MNKBLYOzj8lzH34uXn5P8K1maCoEoQ/XuYPcaIdkz8nD9So45bjP7zyd9ELWQJAZdIPWumQ9L/dhjXUK8vzPy7jaDlrEfO/2H/tgwAj8L96v7b7wnoZwJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="
48
+ },
49
+ "_episode_num": 1000,
50
+ "use_sde": false,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": 0.0,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIIXjT+ee4GMAWyUTegDjAF0lEdAh3EzWwu/UXV9lChoBkdAoSMbONYKY2gHTegDaAhHQId3xTuOS4h1fZQoaAZHQKGh25BkZrJoB03oA2gIR0CHffoYekpJdX2UKGgGR0CjNU8qOLiuaAdN6ANoCEdAh4Q6FmFrVXV9lChoBkdAoh8gqNIbwWgHTegDaAhHQIeK+1F6Rhd1fZQoaAZHQKF3sYjSofloB03oA2gIR0CHkah11W8zdX2UKGgGR0CbFzxXXAdoaAdN6ANoCEdAh5hLOZ9d/3V9lChoBkdAocxszTF2m2gHTegDaAhHQIee0TL4etF1fZQoaAZHQKJcHitJWeZoB03oA2gIR0CHpYUKRdQgdX2UKGgGR0CjE3F5GBnSaAdN6ANoCEdAh6waCcwxnHV9lChoBkdAoTLUYsNDt2gHTegDaAhHQIeyryUcGTt1fZQoaAZHQKDnBitq59VoB03oA2gIR0CHuUA8SwnqdX2UKGgGR0ChBjBSUC7saAdN6ANoCEdAh7/JhnanJnV9lChoBkdAohPzuBtk4GgHTegDaAhHQIfGYPCl7+l1fZQoaAZHQKINmSKWLP5oB03oA2gIR0CHzPlbNbC8dX2UKGgGR0CiTw69TP0JaAdN6ANoCEdAh9N7+tKZlXV9lChoBkdAoFBxeZ5Rj2gHTegDaAhHQIfaIsK9f1J1fZQoaAZHQJbythhH9WJoB03oA2gIR0CH4NFvQ4S6dX2UKGgGR0CiZwEovzvraAdN6ANoCEdAh+dcHGCI13V9lChoBkdAndkgb2lEZ2gHTegDaAhHQIfuKRhc7hh1fZQoaAZHQKBKcuuieupoB03oA2gIR0CH9QK1og3cdX2UKGgGR0CV6AIf8uSPaAdN6ANoCEdAh/uwH7gsLHV9lChoBkdAnplu4G2TgWgHTegDaAhHQIgCa6UaAFx1fZQoaAZHQKGK2ZG8VYZoB03oA2gIR0CICRJA+pwTdX2UKGgGR0CcwyRLbpNcaAdN6ANoCEdAiA976Hj6vnV9lChoBkdAoDcNX5nDi2gHTegDaAhHQIgV2hbnoxJ1fZQoaAZHQKGryDlHSWtoB03oA2gIR0CIHCd/axoqdX2UKGgGR0ChICd7OVxCaAdN6ANoCEdAiCKXe3x4IXV9lChoBkdAoBjHjyWiUWgHTegDaAhHQIgpJU3n6mB1fZQoaAZHQKGsKiHqNZNoB03oA2gIR0CIL8CbtqpMdX2UKGgGR0CiuQ0WM0gsaAdN6ANoCEdAiDZr8zhxYXV9lChoBkdAoHMv5HmRvGgHTegDaAhHQIg8/Mt9QXR1fZQoaAZHQKL1D/NqxkdoB03oA2gIR0CIQ2fRNRFadX2UKGgGR0ChDgBsyi22aAdN6ANoCEdAiEnA8r7O3XV9lChoBkdAkt2j7/GVA2gHTegDaAhHQIhP9dkauOl1fZQoaAZHQKHsF2EkB0ZoB03oA2gIR0CIVq5q/M4cdX2UKGgGR0CiQH2ZqmCRaAdN6ANoCEdAiF14GMXJo3V9lChoBkdAokZxKtga32gHTegDaAhHQIhkL3/Pw/h1fZQoaAZHQKKEA9QoCuFoB03oA2gIR0CIaua72+PBdX2UKGgGR0ChWeIP9UCJaAdN6ANoCEdAiHGcurZJ1HV9lChoBkdAmNk8SkCV8mgHTegDaAhHQIh4aOWBz3h1fZQoaAZHQKITVeUpuuRoB03oA2gIR0CIfwo99tuUdX2UKGgGR0CiWQj6WPcSaAdN6ANoCEdAiIWa4+bExnV9lChoBkdAnqRi0Sh8IGgHTegDaAhHQIiMF+iJwbV1fZQoaAZHQJ98eRigCfZoB03oA2gIR0CIko2F36hydX2UKGgGR0Chtaww0wajaAdN6ANoCEdAiJk7pV0cO3V9lChoBkdApD8ipWFN+WgHTegDaAhHQIif8b3oLXt1fZQoaAZHQKHpgybhFVloB03oA2gIR0CIpomGdqcmdX2UKGgGR0ChrxGBnSOSaAdN6ANoCEdAiK0Fvybx3HV9lChoBkdAoeGvDrJKa2gHTegDaAhHQIizcwlByCF1fZQoaAZHQKJkToFFDv5oB03oA2gIR0CIugCIUJv6dX2UKGgGR0CgKmO8CgbqaAdN6ANoCEdAiMCoqkM1CXV9lChoBkdAoM4Wm1pj+mgHTegDaAhHQIjHaHoHLRt1fZQoaAZHQKDsT4/NZ/1oB03oA2gIR0CIzgRRuTA4dX2UKGgGR0ChoOYuscQzaAdN6ANoCEdAiNSo7muDBnV9lChoBkdAocxKpvP1MGgHTegDaAhHQIjbU+NcW0t1fZQoaAZHQKFCOnqFAVxoB03oA2gIR0CI4g+49X9zdX2UKGgGR0Chu8iZF5OaaAdN6ANoCEdAiOjv6TGHYnV9lChoBkdAoSTGt0V8C2gHTegDaAhHQIjvvTy8SPF1fZQoaAZHQKJ2j7b+Lm9oB03oA2gIR0CI9mCUX531dX2UKGgGR0CjDXZmyxA0aAdN6ANoCEdAiPzzHjp9qnV9lChoBkdAoaJLXlKbrmgHTegDaAhHQIkDemce8wp1fZQoaAZHQKL7NQ66reZoB03oA2gIR0CJCgAG0NSZdX2UKGgGR0CgyJjWTX8PaAdN6ANoCEdAiRCmjTKDCnV9lChoBkdAob8cWqLjxWgHTegDaAhHQIkXYkgOjIt1fZQoaAZHQKMzxCfpUxVoB03oA2gIR0CJHfFglWwNdX2UKGgGR0CjhAc5S3spaAdN6ANoCEdAiSSFANXo1XV9lChoBkdAoh47U5MlC2gHTegDaAhHQIkrBMewLVp1fZQoaAZHQKHZwyYXwb5oB03oA2gIR0CJMafGMn7YdX2UKGgGR0ChYRiMglniaAdN6ANoCEdAiTgvJRwZO3V9lChoBkdAoIdNQO4G2WgHTegDaAhHQIk+69RJmNB1fZQoaAZHQKEz+AZKnNxoB03oA2gIR0CJRZfaYeDGdX2UKGgGR0CihkfaxoqTaAdN6ANoCEdAiUxOloDgZXV9lChoBkdAoX81r433pWgHTegDaAhHQIlTAAfdRBN1fZQoaAZHQKIg/YZEUj9oB03oA2gIR0CJWZ003wTedX2UKGgGR0Cd7t6hg3LnaAdN6ANoCEdAiWA+Zw4sE3V9lChoBkdAoTdrwDvE0mgHTegDaAhHQIlm14keIVN1fZQoaAZHQKGE0j1wo9doB03oA2gIR0CJbWWl/H5rdX2UKGgGR0Cha9pPhybQaAdN6ANoCEdAiXQwgs9SuXV9lChoBkdAo0FalLvkR2gHTegDaAhHQIl6wXl8w6B1fZQoaAZHQKGYm/BWPtFoB03oA2gIR0CJgVgF5fMOdX2UKGgGR0CicAQ0oBq9aAdN6ANoCEdAiYfQTmGM43V9lChoBkdAobmqb8WKuWgHTegDaAhHQImOXKfWcz91fZQoaAZHQKLqP238XN1oB03oA2gIR0CJlNmq5sj3dX2UKGgGR0CeZbhTOxB3aAdN6ANoCEdAiZvVTzd1uHV9lChoBkdAoL1L3RG+bmgHTegDaAhHQImifXI2fkF1fZQoaAZHQKHvZ4/u9e1oB03oA2gIR0CJqT+WnjyXdX2UKGgGR0ChawK15Sm7aAdN6ANoCEdAia/vLowEhnV9lChoBkdAoSqruQZGa2gHTegDaAhHQIm20UmD15B1fZQoaAZHQKMP6iX6ZYxoB03oA2gIR0CJva/BWPtEdX2UKGgGR0ChlITpPhybaAdN6ANoCEdAicRwN0/4ZnV9lChoBkdAoVUQ1He7+WgHTegDaAhHQInLSQHRkVh1fZQoaAZHQJvw6Uu+RHRoB03oA2gIR0CJ0k2oegctdX2UKGgGR0CiuQz4DcM3aAdN6ANoCEdAidlhTGYKIHV9lChoBkdAoM81yFPBSGgHTegDaAhHQIngZQYUFjd1fZQoaAZHQKDLEjJuEVZoB03oA2gIR0CJ57R4QjD9dX2UKGgGR0CjcKIuPFNtaAdN6ANoCEdAie7fCZWq+HV9lChoBkdAoxoJpL26CmgHTegDaAhHQIn1mHDaXa91fZQoaAZHQKKYb0IToMdoB03oA2gIR0CJ/IYeDFqBdX2UKGgGR0ChR5RqGlANaAdN6ANoCEdAigOP4mCyyHVlLg=="
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 31219,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
+ ":serialized:": "gAWVUQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgwAAAAAAAAAAAAAAAAAAAAAAAAAlGgUSwyFlGgYdJRSlIwGX3NoYXBllEsMhZSMA2xvd5RoECiWYAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApLDIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksMhZRoGHSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
66
+ "dtype": "float64",
67
+ "bounded_below": "[False False False False False False False False False False False False]",
68
+ "bounded_above": "[False False False False False False False False False False False False]",
69
+ "_shape": [
70
+ 12
71
+ ],
72
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
73
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf]",
74
+ "low_repr": "-inf",
75
+ "high_repr": "inf",
76
+ "_np_random": null
77
+ },
78
+ "action_space": {
79
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
80
+ ":serialized:": "gAWVWgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgxjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg8ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
81
+ "dtype": "float32",
82
+ "bounded_below": "[ True True True]",
83
+ "bounded_above": "[ True True True]",
84
+ "_shape": [
85
+ 3
86
+ ],
87
+ "low": "[-1. -1. -1.]",
88
+ "high": "[1. 1. 1.]",
89
+ "low_repr": "-1.0",
90
+ "high_repr": "1.0",
91
+ "_np_random": "Generator(PCG64)"
92
+ },
93
+ "n_envs": 1,
94
+ "buffer_size": 1,
95
+ "batch_size": 128,
96
+ "learning_starts": 1000,
97
+ "tau": 0.08,
98
+ "gamma": 0.98,
99
+ "gradient_steps": 1,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
106
+ "__init__": "<function ReplayBuffer.__init__ at 0x7faeb6bb0700>",
107
+ "add": "<function ReplayBuffer.add at 0x7faeb6bb0790>",
108
+ "sample": "<function ReplayBuffer.sample at 0x7faeb6bb0820>",
109
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7faeb6bb08b0>",
110
+ "_maybe_cast_dtype": "<staticmethod object at 0x7faeb6ba9820>",
111
+ "__abstractmethods__": "frozenset()",
112
+ "_abc_impl": "<_abc_data object at 0x7faeb6ba9840>"
113
+ },
114
+ "replay_buffer_kwargs": {},
115
+ "train_freq": {
116
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
117
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
118
+ },
119
+ "use_sde_at_warmup": false,
120
+ "target_entropy": -3.0,
121
+ "ent_coef": "auto",
122
+ "target_update_interval": 1,
123
+ "lr_schedule": {
124
+ ":type:": "<class 'function'>",
125
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1wDdAZveNiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
126
+ },
127
+ "batch_norm_stats": [],
128
+ "batch_norm_stats_target": []
129
+ }
sac-seals-Hopper-v1/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0e52c96a4af45683911d24cca80f86084bb7c8de294de38418e1ea5054fc0c4
3
+ size 1507
sac-seals-Hopper-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2750fe958fdec1e32cc809e8200420e969276031a9daf3709f78191e274e5f47
3
+ size 1415493
sac-seals-Hopper-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1ea903b7595ed50bb0054345f5675de8ca82cf2d04e80da46afc921b8427126
3
+ size 747
sac-seals-Hopper-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818601e1f03a8d87ec73733cbbd3f72fe57badff12dbcbf1f3f42aa879747d55
3
+ size 29672