--- library_name: stable-baselines3 tags: - seals/Swimmer-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: SAC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: seals/Swimmer-v1 type: seals/Swimmer-v1 metrics: - type: mean_reward value: 28.90 +/- 1.67 name: mean_reward verified: false --- # **SAC** Agent playing **seals/Swimmer-v1** This is a trained model of a **SAC** agent playing **seals/Swimmer-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo sac --env seals/Swimmer-v1 -orga HumanCompatibleAI -f logs/ python -m rl_zoo3.enjoy --algo sac --env seals/Swimmer-v1 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo sac --env seals/Swimmer-v1 -orga HumanCompatibleAI -f logs/ python -m rl_zoo3.enjoy --algo sac --env seals/Swimmer-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo sac --env seals/Swimmer-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo sac --env seals/Swimmer-v1 -f logs/ -orga HumanCompatibleAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 100000), ('gamma', 0.995), ('learning_rate', 0.00039981805535514633), ('learning_starts', 1000), ('n_timesteps', 1000000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', {'log_std_init': -2.689958330139309, 'net_arch': [400, 300], 'use_sde': False}), ('tau', 0.01), ('train_freq', 256), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```