---
base_model: Huzaifa68/investment_v1
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:35
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Historical Performance (%)
sentences:
- Investment Objective
- investment committee
- historical performance
- source_sentence: Investment Objective
sentences:
- historical performance
- Sindh Workers'
- objective
- source_sentence: Fund Statistics
sentences:
- Investment Objective
- statistics
- Asset Allocation
- source_sentence: Investment Objective
sentences:
- Asset Allocation
- Investment Committee
- objective
- source_sentence: Basic Information
sentences:
- investment objective
- information
- Asset Allocation (as % of Total Assets)
---
# SentenceTransformer based on Huzaifa68/investment_v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Huzaifa68/investment_v1](https://huggingface.co/Huzaifa68/investment_v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Huzaifa68/investment_v1](https://huggingface.co/Huzaifa68/investment_v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Huzaifa68/investment_v6")
# Run inference
sentences = [
'Basic Information',
'information',
'Asset Allocation (as % of Total Assets)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 35 training samples
* Columns: anchor
, postive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | postive | negative |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Investment Objective
| investment objective
| Asset Allocation (as % of Total Assets)
|
| Investment Objective
| investment objective
| Fund Statistics
|
| Investment Objective
| investment objective
| Fund Performance
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters