prateeky2806's picture
Training in progress, step 1000
4090596
{
"best_metric": 0.7248261570930481,
"best_model_checkpoint": "./output_v2/7b_cluster011_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_011/checkpoint-800",
"epoch": 2.313475997686524,
"global_step": 1000,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7957,
"step": 10
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.718,
"step": 20
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.73,
"step": 30
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7826,
"step": 40
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7013,
"step": 50
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7353,
"step": 60
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.6666,
"step": 70
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7649,
"step": 80
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7018,
"step": 90
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.7173,
"step": 100
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.7857,
"step": 110
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.7154,
"step": 120
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.7485,
"step": 130
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.7114,
"step": 140
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.7333,
"step": 150
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.6549,
"step": 160
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6765,
"step": 170
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.677,
"step": 180
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6763,
"step": 190
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.6638,
"step": 200
},
{
"epoch": 0.46,
"eval_loss": 0.7327473163604736,
"eval_runtime": 246.3779,
"eval_samples_per_second": 4.059,
"eval_steps_per_second": 2.029,
"step": 200
},
{
"epoch": 0.46,
"mmlu_eval_accuracy": 0.4592376175825003,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.5454545454545454,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.7093023255813954,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.38235294117647056,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.173365458184683,
"step": 200
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.6849,
"step": 210
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.7275,
"step": 220
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.6976,
"step": 230
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.6896,
"step": 240
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.6831,
"step": 250
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.8049,
"step": 260
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.6878,
"step": 270
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.6679,
"step": 280
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.6808,
"step": 290
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.7648,
"step": 300
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.7605,
"step": 310
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.7504,
"step": 320
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.7853,
"step": 330
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.7272,
"step": 340
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.6934,
"step": 350
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.7053,
"step": 360
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.7487,
"step": 370
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.668,
"step": 380
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6899,
"step": 390
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.684,
"step": 400
},
{
"epoch": 0.93,
"eval_loss": 0.7251922488212585,
"eval_runtime": 246.5381,
"eval_samples_per_second": 4.056,
"eval_steps_per_second": 2.028,
"step": 400
},
{
"epoch": 0.93,
"mmlu_eval_accuracy": 0.46184696708834644,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1016935974982016,
"step": 400
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.7535,
"step": 410
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.707,
"step": 420
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.7077,
"step": 430
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.6389,
"step": 440
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.6701,
"step": 450
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.6462,
"step": 460
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.6421,
"step": 470
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.6822,
"step": 480
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.5916,
"step": 490
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.7141,
"step": 500
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.679,
"step": 510
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.5723,
"step": 520
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.6451,
"step": 530
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.6802,
"step": 540
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.5868,
"step": 550
},
{
"epoch": 1.3,
"learning_rate": 0.0002,
"loss": 0.6386,
"step": 560
},
{
"epoch": 1.32,
"learning_rate": 0.0002,
"loss": 0.5967,
"step": 570
},
{
"epoch": 1.34,
"learning_rate": 0.0002,
"loss": 0.618,
"step": 580
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.6294,
"step": 590
},
{
"epoch": 1.39,
"learning_rate": 0.0002,
"loss": 0.6417,
"step": 600
},
{
"epoch": 1.39,
"eval_loss": 0.7272388935089111,
"eval_runtime": 247.55,
"eval_samples_per_second": 4.04,
"eval_steps_per_second": 2.02,
"step": 600
},
{
"epoch": 1.39,
"mmlu_eval_accuracy": 0.4580576219014606,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.069228487308125,
"step": 600
},
{
"epoch": 1.41,
"learning_rate": 0.0002,
"loss": 0.6904,
"step": 610
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.6646,
"step": 620
},
{
"epoch": 1.46,
"learning_rate": 0.0002,
"loss": 0.6827,
"step": 630
},
{
"epoch": 1.48,
"learning_rate": 0.0002,
"loss": 0.6825,
"step": 640
},
{
"epoch": 1.5,
"learning_rate": 0.0002,
"loss": 0.6406,
"step": 650
},
{
"epoch": 1.53,
"learning_rate": 0.0002,
"loss": 0.6767,
"step": 660
},
{
"epoch": 1.55,
"learning_rate": 0.0002,
"loss": 0.6222,
"step": 670
},
{
"epoch": 1.57,
"learning_rate": 0.0002,
"loss": 0.5656,
"step": 680
},
{
"epoch": 1.6,
"learning_rate": 0.0002,
"loss": 0.6281,
"step": 690
},
{
"epoch": 1.62,
"learning_rate": 0.0002,
"loss": 0.6449,
"step": 700
},
{
"epoch": 1.64,
"learning_rate": 0.0002,
"loss": 0.6087,
"step": 710
},
{
"epoch": 1.67,
"learning_rate": 0.0002,
"loss": 0.6179,
"step": 720
},
{
"epoch": 1.69,
"learning_rate": 0.0002,
"loss": 0.596,
"step": 730
},
{
"epoch": 1.71,
"learning_rate": 0.0002,
"loss": 0.6577,
"step": 740
},
{
"epoch": 1.74,
"learning_rate": 0.0002,
"loss": 0.65,
"step": 750
},
{
"epoch": 1.76,
"learning_rate": 0.0002,
"loss": 0.5936,
"step": 760
},
{
"epoch": 1.78,
"learning_rate": 0.0002,
"loss": 0.65,
"step": 770
},
{
"epoch": 1.8,
"learning_rate": 0.0002,
"loss": 0.5787,
"step": 780
},
{
"epoch": 1.83,
"learning_rate": 0.0002,
"loss": 0.6082,
"step": 790
},
{
"epoch": 1.85,
"learning_rate": 0.0002,
"loss": 0.6129,
"step": 800
},
{
"epoch": 1.85,
"eval_loss": 0.7248261570930481,
"eval_runtime": 246.8878,
"eval_samples_per_second": 4.05,
"eval_steps_per_second": 2.025,
"step": 800
},
{
"epoch": 1.85,
"mmlu_eval_accuracy": 0.4610550473708825,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.18181818181818182,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0681800356538427,
"step": 800
},
{
"epoch": 1.87,
"learning_rate": 0.0002,
"loss": 0.6516,
"step": 810
},
{
"epoch": 1.9,
"learning_rate": 0.0002,
"loss": 0.6268,
"step": 820
},
{
"epoch": 1.92,
"learning_rate": 0.0002,
"loss": 0.6463,
"step": 830
},
{
"epoch": 1.94,
"learning_rate": 0.0002,
"loss": 0.6401,
"step": 840
},
{
"epoch": 1.97,
"learning_rate": 0.0002,
"loss": 0.6529,
"step": 850
},
{
"epoch": 1.99,
"learning_rate": 0.0002,
"loss": 0.6089,
"step": 860
},
{
"epoch": 2.01,
"learning_rate": 0.0002,
"loss": 0.5814,
"step": 870
},
{
"epoch": 2.04,
"learning_rate": 0.0002,
"loss": 0.4863,
"step": 880
},
{
"epoch": 2.06,
"learning_rate": 0.0002,
"loss": 0.5209,
"step": 890
},
{
"epoch": 2.08,
"learning_rate": 0.0002,
"loss": 0.4846,
"step": 900
},
{
"epoch": 2.11,
"learning_rate": 0.0002,
"loss": 0.5142,
"step": 910
},
{
"epoch": 2.13,
"learning_rate": 0.0002,
"loss": 0.5423,
"step": 920
},
{
"epoch": 2.15,
"learning_rate": 0.0002,
"loss": 0.5756,
"step": 930
},
{
"epoch": 2.17,
"learning_rate": 0.0002,
"loss": 0.5048,
"step": 940
},
{
"epoch": 2.2,
"learning_rate": 0.0002,
"loss": 0.5303,
"step": 950
},
{
"epoch": 2.22,
"learning_rate": 0.0002,
"loss": 0.5121,
"step": 960
},
{
"epoch": 2.24,
"learning_rate": 0.0002,
"loss": 0.574,
"step": 970
},
{
"epoch": 2.27,
"learning_rate": 0.0002,
"loss": 0.5207,
"step": 980
},
{
"epoch": 2.29,
"learning_rate": 0.0002,
"loss": 0.5412,
"step": 990
},
{
"epoch": 2.31,
"learning_rate": 0.0002,
"loss": 0.5303,
"step": 1000
},
{
"epoch": 2.31,
"eval_loss": 0.7593775391578674,
"eval_runtime": 246.7377,
"eval_samples_per_second": 4.053,
"eval_steps_per_second": 2.026,
"step": 1000
},
{
"epoch": 2.31,
"mmlu_eval_accuracy": 0.4569260811160823,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.5454545454545454,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.43478260869565216,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.3353144975267253,
"step": 1000
}
],
"max_steps": 5000,
"num_train_epochs": 12,
"total_flos": 2.8575842355715277e+17,
"trial_name": null,
"trial_params": null
}