Nous-Hermes-llama-2-7b_7b_cluster016_partitioned_v3_standardized_016
/
checkpoint-800
/trainer_state.json
{ | |
"best_metric": 0.545791745185852, | |
"best_model_checkpoint": "./output_v2/7b_cluster016_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_016/checkpoint-800", | |
"epoch": 1.3366750208855471, | |
"global_step": 800, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.6709, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 0.6086, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.6457, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.5722, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.6039, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.6079, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.6261, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.5876, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 0.5645, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.5902, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.6008, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.588, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.6001, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.5684, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.5776, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.5482, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.5759, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.3, | |
"learning_rate": 0.0002, | |
"loss": 0.5736, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 0.5417, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.33, | |
"learning_rate": 0.0002, | |
"loss": 0.5581, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.33, | |
"eval_loss": 0.5835912227630615, | |
"eval_runtime": 210.8375, | |
"eval_samples_per_second": 4.743, | |
"eval_steps_per_second": 2.371, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.33, | |
"mmlu_eval_accuracy": 0.46615455952712886, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.5, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3352941176470588, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.1704803334048148, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.35, | |
"learning_rate": 0.0002, | |
"loss": 0.5413, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.37, | |
"learning_rate": 0.0002, | |
"loss": 0.5632, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.38, | |
"learning_rate": 0.0002, | |
"loss": 0.5752, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.4, | |
"learning_rate": 0.0002, | |
"loss": 0.5583, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.42, | |
"learning_rate": 0.0002, | |
"loss": 0.5274, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 0.6163, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.45, | |
"learning_rate": 0.0002, | |
"loss": 0.5673, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.47, | |
"learning_rate": 0.0002, | |
"loss": 0.5241, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.48, | |
"learning_rate": 0.0002, | |
"loss": 0.5564, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.5, | |
"learning_rate": 0.0002, | |
"loss": 0.5451, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.52, | |
"learning_rate": 0.0002, | |
"loss": 0.5661, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.5467, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.55, | |
"learning_rate": 0.0002, | |
"loss": 0.5513, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.57, | |
"learning_rate": 0.0002, | |
"loss": 0.5999, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.58, | |
"learning_rate": 0.0002, | |
"loss": 0.5518, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.6, | |
"learning_rate": 0.0002, | |
"loss": 0.4896, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 0.5314, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.63, | |
"learning_rate": 0.0002, | |
"loss": 0.5495, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 0.553, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 0.5324, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.67, | |
"eval_loss": 0.5613595843315125, | |
"eval_runtime": 210.7546, | |
"eval_samples_per_second": 4.745, | |
"eval_steps_per_second": 2.372, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.67, | |
"mmlu_eval_accuracy": 0.47295524277138523, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.35294117647058826, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.48148148148148145, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.1208655159366037, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.5643, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.7, | |
"learning_rate": 0.0002, | |
"loss": 0.5243, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.72, | |
"learning_rate": 0.0002, | |
"loss": 0.5433, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.74, | |
"learning_rate": 0.0002, | |
"loss": 0.5584, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.75, | |
"learning_rate": 0.0002, | |
"loss": 0.5438, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.77, | |
"learning_rate": 0.0002, | |
"loss": 0.5203, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.79, | |
"learning_rate": 0.0002, | |
"loss": 0.5328, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.8, | |
"learning_rate": 0.0002, | |
"loss": 0.5204, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.82, | |
"learning_rate": 0.0002, | |
"loss": 0.5194, | |
"step": 490 | |
}, | |
{ | |
"epoch": 0.84, | |
"learning_rate": 0.0002, | |
"loss": 0.5325, | |
"step": 500 | |
}, | |
{ | |
"epoch": 0.85, | |
"learning_rate": 0.0002, | |
"loss": 0.5407, | |
"step": 510 | |
}, | |
{ | |
"epoch": 0.87, | |
"learning_rate": 0.0002, | |
"loss": 0.4747, | |
"step": 520 | |
}, | |
{ | |
"epoch": 0.89, | |
"learning_rate": 0.0002, | |
"loss": 0.5048, | |
"step": 530 | |
}, | |
{ | |
"epoch": 0.9, | |
"learning_rate": 0.0002, | |
"loss": 0.5533, | |
"step": 540 | |
}, | |
{ | |
"epoch": 0.92, | |
"learning_rate": 0.0002, | |
"loss": 0.5219, | |
"step": 550 | |
}, | |
{ | |
"epoch": 0.94, | |
"learning_rate": 0.0002, | |
"loss": 0.5357, | |
"step": 560 | |
}, | |
{ | |
"epoch": 0.95, | |
"learning_rate": 0.0002, | |
"loss": 0.5327, | |
"step": 570 | |
}, | |
{ | |
"epoch": 0.97, | |
"learning_rate": 0.0002, | |
"loss": 0.492, | |
"step": 580 | |
}, | |
{ | |
"epoch": 0.99, | |
"learning_rate": 0.0002, | |
"loss": 0.5312, | |
"step": 590 | |
}, | |
{ | |
"epoch": 1.0, | |
"learning_rate": 0.0002, | |
"loss": 0.5238, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.0, | |
"eval_loss": 0.5487588047981262, | |
"eval_runtime": 211.0529, | |
"eval_samples_per_second": 4.738, | |
"eval_steps_per_second": 2.369, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.0, | |
"mmlu_eval_accuracy": 0.4657057894438228, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3352941176470588, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.5, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.2064378902744064, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.02, | |
"learning_rate": 0.0002, | |
"loss": 0.4304, | |
"step": 610 | |
}, | |
{ | |
"epoch": 1.04, | |
"learning_rate": 0.0002, | |
"loss": 0.466, | |
"step": 620 | |
}, | |
{ | |
"epoch": 1.05, | |
"learning_rate": 0.0002, | |
"loss": 0.4934, | |
"step": 630 | |
}, | |
{ | |
"epoch": 1.07, | |
"learning_rate": 0.0002, | |
"loss": 0.4605, | |
"step": 640 | |
}, | |
{ | |
"epoch": 1.09, | |
"learning_rate": 0.0002, | |
"loss": 0.4799, | |
"step": 650 | |
}, | |
{ | |
"epoch": 1.1, | |
"learning_rate": 0.0002, | |
"loss": 0.4572, | |
"step": 660 | |
}, | |
{ | |
"epoch": 1.12, | |
"learning_rate": 0.0002, | |
"loss": 0.4398, | |
"step": 670 | |
}, | |
{ | |
"epoch": 1.14, | |
"learning_rate": 0.0002, | |
"loss": 0.4673, | |
"step": 680 | |
}, | |
{ | |
"epoch": 1.15, | |
"learning_rate": 0.0002, | |
"loss": 0.5008, | |
"step": 690 | |
}, | |
{ | |
"epoch": 1.17, | |
"learning_rate": 0.0002, | |
"loss": 0.4832, | |
"step": 700 | |
}, | |
{ | |
"epoch": 1.19, | |
"learning_rate": 0.0002, | |
"loss": 0.4558, | |
"step": 710 | |
}, | |
{ | |
"epoch": 1.2, | |
"learning_rate": 0.0002, | |
"loss": 0.4661, | |
"step": 720 | |
}, | |
{ | |
"epoch": 1.22, | |
"learning_rate": 0.0002, | |
"loss": 0.4483, | |
"step": 730 | |
}, | |
{ | |
"epoch": 1.24, | |
"learning_rate": 0.0002, | |
"loss": 0.5047, | |
"step": 740 | |
}, | |
{ | |
"epoch": 1.25, | |
"learning_rate": 0.0002, | |
"loss": 0.479, | |
"step": 750 | |
}, | |
{ | |
"epoch": 1.27, | |
"learning_rate": 0.0002, | |
"loss": 0.4975, | |
"step": 760 | |
}, | |
{ | |
"epoch": 1.29, | |
"learning_rate": 0.0002, | |
"loss": 0.4797, | |
"step": 770 | |
}, | |
{ | |
"epoch": 1.3, | |
"learning_rate": 0.0002, | |
"loss": 0.4884, | |
"step": 780 | |
}, | |
{ | |
"epoch": 1.32, | |
"learning_rate": 0.0002, | |
"loss": 0.4631, | |
"step": 790 | |
}, | |
{ | |
"epoch": 1.34, | |
"learning_rate": 0.0002, | |
"loss": 0.4541, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.34, | |
"eval_loss": 0.545791745185852, | |
"eval_runtime": 211.0641, | |
"eval_samples_per_second": 4.738, | |
"eval_steps_per_second": 2.369, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.34, | |
"mmlu_eval_accuracy": 0.46218071540689526, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.5454545454545454, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.5833333333333334, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, | |
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, | |
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, | |
"mmlu_eval_accuracy_professional_medicine": 0.3548387096774194, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.5909090909090909, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7894736842105263, | |
"mmlu_loss": 1.1216171698610715, | |
"step": 800 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 9, | |
"total_flos": 1.9806458895006106e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |