prateeky2806's picture
Training in progress, step 400
568cd07
raw
history blame
12.5 kB
{
"best_metric": 0.5059861540794373,
"best_model_checkpoint": "./output_v2/7b_cluster026_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_026/checkpoint-400",
"epoch": 0.42160737812911725,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.723,
"step": 10
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6175,
"step": 20
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.5857,
"step": 30
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.573,
"step": 40
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5669,
"step": 50
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5417,
"step": 60
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.5666,
"step": 70
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6158,
"step": 80
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5122,
"step": 90
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.5559,
"step": 100
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.5341,
"step": 110
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.5098,
"step": 120
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.5355,
"step": 130
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.4967,
"step": 140
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5619,
"step": 150
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.5401,
"step": 160
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.4559,
"step": 170
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.5469,
"step": 180
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.4936,
"step": 190
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.5205,
"step": 200
},
{
"epoch": 0.21,
"eval_loss": 0.526250958442688,
"eval_runtime": 127.7705,
"eval_samples_per_second": 7.827,
"eval_steps_per_second": 3.913,
"step": 200
},
{
"epoch": 0.21,
"mmlu_eval_accuracy": 0.4451746082548338,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1821206606554924,
"step": 200
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.528,
"step": 210
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.5451,
"step": 220
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.4991,
"step": 230
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.5335,
"step": 240
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.552,
"step": 250
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.5038,
"step": 260
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.4999,
"step": 270
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.498,
"step": 280
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5372,
"step": 290
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.5633,
"step": 300
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.555,
"step": 310
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.5152,
"step": 320
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.4703,
"step": 330
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.4987,
"step": 340
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.5223,
"step": 350
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.508,
"step": 360
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.5035,
"step": 370
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.4861,
"step": 380
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5071,
"step": 390
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5253,
"step": 400
},
{
"epoch": 0.42,
"eval_loss": 0.5059861540794373,
"eval_runtime": 162.7698,
"eval_samples_per_second": 6.144,
"eval_steps_per_second": 3.072,
"step": 400
},
{
"epoch": 0.42,
"mmlu_eval_accuracy": 0.43943772184310154,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.18181818181818182,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.28125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.65,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0068739111834344,
"step": 400
}
],
"max_steps": 5000,
"num_train_epochs": 6,
"total_flos": 5.564589119697715e+16,
"trial_name": null,
"trial_params": null
}