{ "best_metric": 0.46646037697792053, "best_model_checkpoint": "./output_v2/7b_cluster026_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_026/checkpoint-1800", "epoch": 2.5296442687747036, "global_step": 2400, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.723, "step": 10 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6175, "step": 20 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.5857, "step": 30 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.573, "step": 40 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5669, "step": 50 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5417, "step": 60 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.5666, "step": 70 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6158, "step": 80 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.5122, "step": 90 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.5559, "step": 100 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.5341, "step": 110 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.5098, "step": 120 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.5355, "step": 130 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.4967, "step": 140 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5619, "step": 150 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.5401, "step": 160 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.4559, "step": 170 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.5469, "step": 180 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.4936, "step": 190 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5205, "step": 200 }, { "epoch": 0.21, "eval_loss": 0.526250958442688, "eval_runtime": 127.7705, "eval_samples_per_second": 7.827, "eval_steps_per_second": 3.913, "step": 200 }, { "epoch": 0.21, "mmlu_eval_accuracy": 0.4451746082548338, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1821206606554924, "step": 200 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.528, "step": 210 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.5451, "step": 220 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.4991, "step": 230 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.5335, "step": 240 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.552, "step": 250 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5038, "step": 260 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.4999, "step": 270 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.498, "step": 280 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.5372, "step": 290 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.5633, "step": 300 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.555, "step": 310 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.5152, "step": 320 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.4703, "step": 330 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.4987, "step": 340 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.5223, "step": 350 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.508, "step": 360 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.5035, "step": 370 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.4861, "step": 380 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.5071, "step": 390 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5253, "step": 400 }, { "epoch": 0.42, "eval_loss": 0.5059861540794373, "eval_runtime": 162.7698, "eval_samples_per_second": 6.144, "eval_steps_per_second": 3.072, "step": 400 }, { "epoch": 0.42, "mmlu_eval_accuracy": 0.43943772184310154, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.18181818181818182, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.28125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.65, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0068739111834344, "step": 400 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.5145, "step": 410 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.4798, "step": 420 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.4728, "step": 430 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.5151, "step": 440 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.4784, "step": 450 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.5029, "step": 460 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.4603, "step": 470 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5177, "step": 480 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.4676, "step": 490 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.4294, "step": 500 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.4927, "step": 510 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.509, "step": 520 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.4763, "step": 530 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.499, "step": 540 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.4936, "step": 550 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.5154, "step": 560 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.5185, "step": 570 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.4692, "step": 580 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.4859, "step": 590 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.4755, "step": 600 }, { "epoch": 0.63, "eval_loss": 0.4953967332839966, "eval_runtime": 127.6509, "eval_samples_per_second": 7.834, "eval_steps_per_second": 3.917, "step": 600 }, { "epoch": 0.63, "mmlu_eval_accuracy": 0.44296636130010114, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.28125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.48484848484848486, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.979445159590898, "step": 600 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.4985, "step": 610 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.4798, "step": 620 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.4372, "step": 630 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.459, "step": 640 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.4566, "step": 650 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.5171, "step": 660 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.4919, "step": 670 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.4854, "step": 680 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.4689, "step": 690 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.4785, "step": 700 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.5183, "step": 710 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.4489, "step": 720 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.4942, "step": 730 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.489, "step": 740 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.4945, "step": 750 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.5139, "step": 760 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.4682, "step": 770 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.4612, "step": 780 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.4696, "step": 790 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.4923, "step": 800 }, { "epoch": 0.84, "eval_loss": 0.4819973409175873, "eval_runtime": 127.6992, "eval_samples_per_second": 7.831, "eval_steps_per_second": 3.915, "step": 800 }, { "epoch": 0.84, "mmlu_eval_accuracy": 0.4402060582075684, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.3793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.981959992635499, "step": 800 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.4769, "step": 810 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.4918, "step": 820 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.456, "step": 830 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.4702, "step": 840 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.4577, "step": 850 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.519, "step": 860 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.5301, "step": 870 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.4637, "step": 880 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.4931, "step": 890 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.5277, "step": 900 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.5159, "step": 910 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.4564, "step": 920 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.4429, "step": 930 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.4922, "step": 940 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.4927, "step": 950 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.4057, "step": 960 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.4264, "step": 970 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.4433, "step": 980 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.4324, "step": 990 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.4029, "step": 1000 }, { "epoch": 1.05, "eval_loss": 0.4791600704193115, "eval_runtime": 127.7358, "eval_samples_per_second": 7.829, "eval_steps_per_second": 3.914, "step": 1000 }, { "epoch": 1.05, "mmlu_eval_accuracy": 0.46467180515245, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9341255869356522, "step": 1000 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.4331, "step": 1010 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.3946, "step": 1020 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.4069, "step": 1030 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.429, "step": 1040 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.4117, "step": 1050 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.4538, "step": 1060 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.4346, "step": 1070 }, { "epoch": 1.14, "learning_rate": 0.0002, "loss": 0.4236, "step": 1080 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.3701, "step": 1090 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.4249, "step": 1100 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.4294, "step": 1110 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.4398, "step": 1120 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.398, "step": 1130 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.427, "step": 1140 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.4197, "step": 1150 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.4655, "step": 1160 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.4174, "step": 1170 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.4223, "step": 1180 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.4378, "step": 1190 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.3724, "step": 1200 }, { "epoch": 1.26, "eval_loss": 0.4776886999607086, "eval_runtime": 127.679, "eval_samples_per_second": 7.832, "eval_steps_per_second": 3.916, "step": 1200 }, { "epoch": 1.26, "mmlu_eval_accuracy": 0.4717994530523758, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.6363636363636364, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.3333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.37058823529411766, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9070262031692905, "step": 1200 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.4317, "step": 1210 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.4319, "step": 1220 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.4566, "step": 1230 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.3992, "step": 1240 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.4075, "step": 1250 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.4039, "step": 1260 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.4038, "step": 1270 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.382, "step": 1280 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.4022, "step": 1290 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.4489, "step": 1300 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.3975, "step": 1310 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.4187, "step": 1320 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.3863, "step": 1330 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.4457, "step": 1340 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.4179, "step": 1350 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.4036, "step": 1360 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.4167, "step": 1370 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.3885, "step": 1380 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.3813, "step": 1390 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.3902, "step": 1400 }, { "epoch": 1.48, "eval_loss": 0.4798353910446167, "eval_runtime": 127.8202, "eval_samples_per_second": 7.823, "eval_steps_per_second": 3.912, "step": 1400 }, { "epoch": 1.48, "mmlu_eval_accuracy": 0.46940364507316334, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.6363636363636364, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.37058823529411766, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.631578947368421, "mmlu_loss": 1.088950080150257, "step": 1400 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.4201, "step": 1410 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.4211, "step": 1420 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.4487, "step": 1430 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.4076, "step": 1440 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.4646, "step": 1450 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.3904, "step": 1460 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.3894, "step": 1470 }, { "epoch": 1.56, "learning_rate": 0.0002, "loss": 0.4143, "step": 1480 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.4265, "step": 1490 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.4217, "step": 1500 }, { "epoch": 1.59, "learning_rate": 0.0002, "loss": 0.4041, "step": 1510 }, { "epoch": 1.6, "learning_rate": 0.0002, "loss": 0.4113, "step": 1520 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.3756, "step": 1530 }, { "epoch": 1.62, "learning_rate": 0.0002, "loss": 0.4061, "step": 1540 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.4214, "step": 1550 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.4223, "step": 1560 }, { "epoch": 1.65, "learning_rate": 0.0002, "loss": 0.3866, "step": 1570 }, { "epoch": 1.67, "learning_rate": 0.0002, "loss": 0.3955, "step": 1580 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.4416, "step": 1590 }, { "epoch": 1.69, "learning_rate": 0.0002, "loss": 0.3857, "step": 1600 }, { "epoch": 1.69, "eval_loss": 0.4716520607471466, "eval_runtime": 127.9601, "eval_samples_per_second": 7.815, "eval_steps_per_second": 3.907, "step": 1600 }, { "epoch": 1.69, "mmlu_eval_accuracy": 0.46363212751838045, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.48484848484848486, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3333333333333333, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9711427107142094, "step": 1600 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.4272, "step": 1610 }, { "epoch": 1.71, "learning_rate": 0.0002, "loss": 0.4018, "step": 1620 }, { "epoch": 1.72, "learning_rate": 0.0002, "loss": 0.4067, "step": 1630 }, { "epoch": 1.73, "learning_rate": 0.0002, "loss": 0.4175, "step": 1640 }, { "epoch": 1.74, "learning_rate": 0.0002, "loss": 0.4142, "step": 1650 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.4243, "step": 1660 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.4212, "step": 1670 }, { "epoch": 1.77, "learning_rate": 0.0002, "loss": 0.4222, "step": 1680 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.4235, "step": 1690 }, { "epoch": 1.79, "learning_rate": 0.0002, "loss": 0.3672, "step": 1700 }, { "epoch": 1.8, "learning_rate": 0.0002, "loss": 0.4058, "step": 1710 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.4392, "step": 1720 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.3713, "step": 1730 }, { "epoch": 1.83, "learning_rate": 0.0002, "loss": 0.3819, "step": 1740 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.3981, "step": 1750 }, { "epoch": 1.86, "learning_rate": 0.0002, "loss": 0.3923, "step": 1760 }, { "epoch": 1.87, "learning_rate": 0.0002, "loss": 0.4212, "step": 1770 }, { "epoch": 1.88, "learning_rate": 0.0002, "loss": 0.3968, "step": 1780 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.3742, "step": 1790 }, { "epoch": 1.9, "learning_rate": 0.0002, "loss": 0.3945, "step": 1800 }, { "epoch": 1.9, "eval_loss": 0.46646037697792053, "eval_runtime": 127.7419, "eval_samples_per_second": 7.828, "eval_steps_per_second": 3.914, "step": 1800 }, { "epoch": 1.9, "mmlu_eval_accuracy": 0.4542045591160224, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.65, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.48484848484848486, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.1131818244335856, "step": 1800 }, { "epoch": 1.91, "learning_rate": 0.0002, "loss": 0.3883, "step": 1810 }, { "epoch": 1.92, "learning_rate": 0.0002, "loss": 0.3933, "step": 1820 }, { "epoch": 1.93, "learning_rate": 0.0002, "loss": 0.3901, "step": 1830 }, { "epoch": 1.94, "learning_rate": 0.0002, "loss": 0.4038, "step": 1840 }, { "epoch": 1.95, "learning_rate": 0.0002, "loss": 0.4359, "step": 1850 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.3962, "step": 1860 }, { "epoch": 1.97, "learning_rate": 0.0002, "loss": 0.3876, "step": 1870 }, { "epoch": 1.98, "learning_rate": 0.0002, "loss": 0.3987, "step": 1880 }, { "epoch": 1.99, "learning_rate": 0.0002, "loss": 0.4021, "step": 1890 }, { "epoch": 2.0, "learning_rate": 0.0002, "loss": 0.3602, "step": 1900 }, { "epoch": 2.01, "learning_rate": 0.0002, "loss": 0.3208, "step": 1910 }, { "epoch": 2.02, "learning_rate": 0.0002, "loss": 0.329, "step": 1920 }, { "epoch": 2.03, "learning_rate": 0.0002, "loss": 0.333, "step": 1930 }, { "epoch": 2.04, "learning_rate": 0.0002, "loss": 0.3298, "step": 1940 }, { "epoch": 2.06, "learning_rate": 0.0002, "loss": 0.3282, "step": 1950 }, { "epoch": 2.07, "learning_rate": 0.0002, "loss": 0.3286, "step": 1960 }, { "epoch": 2.08, "learning_rate": 0.0002, "loss": 0.3196, "step": 1970 }, { "epoch": 2.09, "learning_rate": 0.0002, "loss": 0.3288, "step": 1980 }, { "epoch": 2.1, "learning_rate": 0.0002, "loss": 0.3138, "step": 1990 }, { "epoch": 2.11, "learning_rate": 0.0002, "loss": 0.3202, "step": 2000 }, { "epoch": 2.11, "eval_loss": 0.4817604422569275, "eval_runtime": 127.9381, "eval_samples_per_second": 7.816, "eval_steps_per_second": 3.908, "step": 2000 }, { "epoch": 2.11, "mmlu_eval_accuracy": 0.4594927694187698, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.7272727272727273, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.18181818181818182, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.42857142857142855, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.34210526315789475, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.1924852333165337, "step": 2000 }, { "epoch": 2.12, "learning_rate": 0.0002, "loss": 0.3297, "step": 2010 }, { "epoch": 2.13, "learning_rate": 0.0002, "loss": 0.3226, "step": 2020 }, { "epoch": 2.14, "learning_rate": 0.0002, "loss": 0.352, "step": 2030 }, { "epoch": 2.15, "learning_rate": 0.0002, "loss": 0.3273, "step": 2040 }, { "epoch": 2.16, "learning_rate": 0.0002, "loss": 0.3301, "step": 2050 }, { "epoch": 2.17, "learning_rate": 0.0002, "loss": 0.3529, "step": 2060 }, { "epoch": 2.18, "learning_rate": 0.0002, "loss": 0.3341, "step": 2070 }, { "epoch": 2.19, "learning_rate": 0.0002, "loss": 0.3239, "step": 2080 }, { "epoch": 2.2, "learning_rate": 0.0002, "loss": 0.2955, "step": 2090 }, { "epoch": 2.21, "learning_rate": 0.0002, "loss": 0.3342, "step": 2100 }, { "epoch": 2.22, "learning_rate": 0.0002, "loss": 0.3348, "step": 2110 }, { "epoch": 2.23, "learning_rate": 0.0002, "loss": 0.3332, "step": 2120 }, { "epoch": 2.25, "learning_rate": 0.0002, "loss": 0.3269, "step": 2130 }, { "epoch": 2.26, "learning_rate": 0.0002, "loss": 0.3588, "step": 2140 }, { "epoch": 2.27, "learning_rate": 0.0002, "loss": 0.3398, "step": 2150 }, { "epoch": 2.28, "learning_rate": 0.0002, "loss": 0.3532, "step": 2160 }, { "epoch": 2.29, "learning_rate": 0.0002, "loss": 0.3121, "step": 2170 }, { "epoch": 2.3, "learning_rate": 0.0002, "loss": 0.3559, "step": 2180 }, { "epoch": 2.31, "learning_rate": 0.0002, "loss": 0.3423, "step": 2190 }, { "epoch": 2.32, "learning_rate": 0.0002, "loss": 0.3504, "step": 2200 }, { "epoch": 2.32, "eval_loss": 0.4891802966594696, "eval_runtime": 127.9416, "eval_samples_per_second": 7.816, "eval_steps_per_second": 3.908, "step": 2200 }, { "epoch": 2.32, "mmlu_eval_accuracy": 0.45339783311312043, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.18181818181818182, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.28125, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.4074074074074074, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.0139663754026198, "step": 2200 }, { "epoch": 2.33, "learning_rate": 0.0002, "loss": 0.3431, "step": 2210 }, { "epoch": 2.34, "learning_rate": 0.0002, "loss": 0.3108, "step": 2220 }, { "epoch": 2.35, "learning_rate": 0.0002, "loss": 0.3294, "step": 2230 }, { "epoch": 2.36, "learning_rate": 0.0002, "loss": 0.3308, "step": 2240 }, { "epoch": 2.37, "learning_rate": 0.0002, "loss": 0.3629, "step": 2250 }, { "epoch": 2.38, "learning_rate": 0.0002, "loss": 0.3327, "step": 2260 }, { "epoch": 2.39, "learning_rate": 0.0002, "loss": 0.3354, "step": 2270 }, { "epoch": 2.4, "learning_rate": 0.0002, "loss": 0.3251, "step": 2280 }, { "epoch": 2.41, "learning_rate": 0.0002, "loss": 0.3278, "step": 2290 }, { "epoch": 2.42, "learning_rate": 0.0002, "loss": 0.3349, "step": 2300 }, { "epoch": 2.43, "learning_rate": 0.0002, "loss": 0.3838, "step": 2310 }, { "epoch": 2.45, "learning_rate": 0.0002, "loss": 0.3498, "step": 2320 }, { "epoch": 2.46, "learning_rate": 0.0002, "loss": 0.331, "step": 2330 }, { "epoch": 2.47, "learning_rate": 0.0002, "loss": 0.3075, "step": 2340 }, { "epoch": 2.48, "learning_rate": 0.0002, "loss": 0.3231, "step": 2350 }, { "epoch": 2.49, "learning_rate": 0.0002, "loss": 0.3452, "step": 2360 }, { "epoch": 2.5, "learning_rate": 0.0002, "loss": 0.3243, "step": 2370 }, { "epoch": 2.51, "learning_rate": 0.0002, "loss": 0.3462, "step": 2380 }, { "epoch": 2.52, "learning_rate": 0.0002, "loss": 0.3585, "step": 2390 }, { "epoch": 2.53, "learning_rate": 0.0002, "loss": 0.3354, "step": 2400 }, { "epoch": 2.53, "eval_loss": 0.4825620651245117, "eval_runtime": 128.0171, "eval_samples_per_second": 7.811, "eval_steps_per_second": 3.906, "step": 2400 }, { "epoch": 2.53, "mmlu_eval_accuracy": 0.44874232482914916, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.36363636363636365, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.3684210526315789, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.0824664946908116, "step": 2400 } ], "max_steps": 5000, "num_train_epochs": 6, "total_flos": 3.3574020928937165e+17, "trial_name": null, "trial_params": null }