Nous-Hermes-llama-2-7b_7b_cluster07_partitioned_v3_standardized_07
/
checkpoint-1400
/trainer_state.json
{ | |
"best_metric": 1.0057677030563354, | |
"best_model_checkpoint": "./output_v2/7b_cluster07_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_07/checkpoint-1400", | |
"epoch": 0.890302066772655, | |
"global_step": 1400, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 1.0736, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 1.1041, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 1.0818, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 1.0408, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 1.0985, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 1.0245, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 1.0205, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 1.0811, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 1.0852, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 1.0296, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 1.0943, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.9857, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 1.0324, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.09, | |
"learning_rate": 0.0002, | |
"loss": 1.0134, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 1.0533, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 1.0667, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 1.0506, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 1.0653, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 1.0372, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 1.0485, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.13, | |
"eval_loss": 1.0341941118240356, | |
"eval_runtime": 172.5264, | |
"eval_samples_per_second": 5.796, | |
"eval_steps_per_second": 2.898, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.13, | |
"mmlu_eval_accuracy": 0.4648810025502313, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.5454545454545454, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.25, | |
"mmlu_eval_accuracy_electrical_engineering": 0.5, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.8, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.7093023255813954, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.5588235294117647, | |
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 1.115347789702621, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.987, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 1.0399, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 1.044, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 1.0491, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 1.0216, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 1.0973, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.996, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 1.0253, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 1.0439, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 1.0244, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 1.0299, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 1.0737, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.21, | |
"learning_rate": 0.0002, | |
"loss": 0.9939, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 1.032, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 1.0291, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 1.0575, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 1.0685, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 1.0342, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 1.0055, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 1.0584, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.25, | |
"eval_loss": 1.0254805088043213, | |
"eval_runtime": 172.7517, | |
"eval_samples_per_second": 5.789, | |
"eval_steps_per_second": 2.894, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.25, | |
"mmlu_eval_accuracy": 0.4742191978590581, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.5, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.5588235294117647, | |
"mmlu_eval_accuracy_prehistory": 0.37142857142857144, | |
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.7272727272727273, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.6111111111111112, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 1.038680466208072, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 1.0107, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 1.0667, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.9837, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 1.0534, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.29, | |
"learning_rate": 0.0002, | |
"loss": 0.9922, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.29, | |
"learning_rate": 0.0002, | |
"loss": 1.0146, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.3, | |
"learning_rate": 0.0002, | |
"loss": 1.0438, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.31, | |
"learning_rate": 0.0002, | |
"loss": 0.9886, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.31, | |
"learning_rate": 0.0002, | |
"loss": 0.988, | |
"step": 490 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 1.0228, | |
"step": 500 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 1.0173, | |
"step": 510 | |
}, | |
{ | |
"epoch": 0.33, | |
"learning_rate": 0.0002, | |
"loss": 0.9993, | |
"step": 520 | |
}, | |
{ | |
"epoch": 0.34, | |
"learning_rate": 0.0002, | |
"loss": 1.0261, | |
"step": 530 | |
}, | |
{ | |
"epoch": 0.34, | |
"learning_rate": 0.0002, | |
"loss": 0.9884, | |
"step": 540 | |
}, | |
{ | |
"epoch": 0.35, | |
"learning_rate": 0.0002, | |
"loss": 0.9894, | |
"step": 550 | |
}, | |
{ | |
"epoch": 0.36, | |
"learning_rate": 0.0002, | |
"loss": 1.0305, | |
"step": 560 | |
}, | |
{ | |
"epoch": 0.36, | |
"learning_rate": 0.0002, | |
"loss": 0.9754, | |
"step": 570 | |
}, | |
{ | |
"epoch": 0.37, | |
"learning_rate": 0.0002, | |
"loss": 1.0075, | |
"step": 580 | |
}, | |
{ | |
"epoch": 0.38, | |
"learning_rate": 0.0002, | |
"loss": 1.0219, | |
"step": 590 | |
}, | |
{ | |
"epoch": 0.38, | |
"learning_rate": 0.0002, | |
"loss": 1.0059, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.38, | |
"eval_loss": 1.0200624465942383, | |
"eval_runtime": 172.8545, | |
"eval_samples_per_second": 5.785, | |
"eval_steps_per_second": 2.893, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.38, | |
"mmlu_eval_accuracy": 0.46940456315845464, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.5, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, | |
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.37142857142857144, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.35294117647058826, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.7272727272727273, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 1.0641063005121196, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 1.0185, | |
"step": 610 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 1.0322, | |
"step": 620 | |
}, | |
{ | |
"epoch": 0.4, | |
"learning_rate": 0.0002, | |
"loss": 1.0053, | |
"step": 630 | |
}, | |
{ | |
"epoch": 0.41, | |
"learning_rate": 0.0002, | |
"loss": 1.0443, | |
"step": 640 | |
}, | |
{ | |
"epoch": 0.41, | |
"learning_rate": 0.0002, | |
"loss": 0.9675, | |
"step": 650 | |
}, | |
{ | |
"epoch": 0.42, | |
"learning_rate": 0.0002, | |
"loss": 1.0216, | |
"step": 660 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 1.0396, | |
"step": 670 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 1.0374, | |
"step": 680 | |
}, | |
{ | |
"epoch": 0.44, | |
"learning_rate": 0.0002, | |
"loss": 0.9234, | |
"step": 690 | |
}, | |
{ | |
"epoch": 0.45, | |
"learning_rate": 0.0002, | |
"loss": 0.9685, | |
"step": 700 | |
}, | |
{ | |
"epoch": 0.45, | |
"learning_rate": 0.0002, | |
"loss": 1.0514, | |
"step": 710 | |
}, | |
{ | |
"epoch": 0.46, | |
"learning_rate": 0.0002, | |
"loss": 1.0374, | |
"step": 720 | |
}, | |
{ | |
"epoch": 0.46, | |
"learning_rate": 0.0002, | |
"loss": 1.036, | |
"step": 730 | |
}, | |
{ | |
"epoch": 0.47, | |
"learning_rate": 0.0002, | |
"loss": 0.9701, | |
"step": 740 | |
}, | |
{ | |
"epoch": 0.48, | |
"learning_rate": 0.0002, | |
"loss": 0.9619, | |
"step": 750 | |
}, | |
{ | |
"epoch": 0.48, | |
"learning_rate": 0.0002, | |
"loss": 1.0571, | |
"step": 760 | |
}, | |
{ | |
"epoch": 0.49, | |
"learning_rate": 0.0002, | |
"loss": 1.0154, | |
"step": 770 | |
}, | |
{ | |
"epoch": 0.5, | |
"learning_rate": 0.0002, | |
"loss": 1.0092, | |
"step": 780 | |
}, | |
{ | |
"epoch": 0.5, | |
"learning_rate": 0.0002, | |
"loss": 1.001, | |
"step": 790 | |
}, | |
{ | |
"epoch": 0.51, | |
"learning_rate": 0.0002, | |
"loss": 0.9411, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.51, | |
"eval_loss": 1.013809323310852, | |
"eval_runtime": 172.8017, | |
"eval_samples_per_second": 5.787, | |
"eval_steps_per_second": 2.893, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.51, | |
"mmlu_eval_accuracy": 0.46531291628150345, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.75, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5454545454545454, | |
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, | |
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, | |
"mmlu_eval_accuracy_virology": 0.5555555555555556, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.9923236886569476, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.52, | |
"learning_rate": 0.0002, | |
"loss": 0.956, | |
"step": 810 | |
}, | |
{ | |
"epoch": 0.52, | |
"learning_rate": 0.0002, | |
"loss": 1.0641, | |
"step": 820 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.9918, | |
"step": 830 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.9516, | |
"step": 840 | |
}, | |
{ | |
"epoch": 0.54, | |
"learning_rate": 0.0002, | |
"loss": 1.0692, | |
"step": 850 | |
}, | |
{ | |
"epoch": 0.55, | |
"learning_rate": 0.0002, | |
"loss": 1.0003, | |
"step": 860 | |
}, | |
{ | |
"epoch": 0.55, | |
"learning_rate": 0.0002, | |
"loss": 0.949, | |
"step": 870 | |
}, | |
{ | |
"epoch": 0.56, | |
"learning_rate": 0.0002, | |
"loss": 0.9744, | |
"step": 880 | |
}, | |
{ | |
"epoch": 0.57, | |
"learning_rate": 0.0002, | |
"loss": 1.0029, | |
"step": 890 | |
}, | |
{ | |
"epoch": 0.57, | |
"learning_rate": 0.0002, | |
"loss": 1.0229, | |
"step": 900 | |
}, | |
{ | |
"epoch": 0.58, | |
"learning_rate": 0.0002, | |
"loss": 1.0498, | |
"step": 910 | |
}, | |
{ | |
"epoch": 0.59, | |
"learning_rate": 0.0002, | |
"loss": 1.0292, | |
"step": 920 | |
}, | |
{ | |
"epoch": 0.59, | |
"learning_rate": 0.0002, | |
"loss": 1.0674, | |
"step": 930 | |
}, | |
{ | |
"epoch": 0.6, | |
"learning_rate": 0.0002, | |
"loss": 1.0258, | |
"step": 940 | |
}, | |
{ | |
"epoch": 0.6, | |
"learning_rate": 0.0002, | |
"loss": 0.9771, | |
"step": 950 | |
}, | |
{ | |
"epoch": 0.61, | |
"learning_rate": 0.0002, | |
"loss": 0.9876, | |
"step": 960 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 0.9789, | |
"step": 970 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 1.0642, | |
"step": 980 | |
}, | |
{ | |
"epoch": 0.63, | |
"learning_rate": 0.0002, | |
"loss": 0.9753, | |
"step": 990 | |
}, | |
{ | |
"epoch": 0.64, | |
"learning_rate": 0.0002, | |
"loss": 0.9893, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 0.64, | |
"eval_loss": 1.0121480226516724, | |
"eval_runtime": 172.7325, | |
"eval_samples_per_second": 5.789, | |
"eval_steps_per_second": 2.895, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 0.64, | |
"mmlu_eval_accuracy": 0.4561918495422321, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.3125, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.27906976744186046, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.5882352941176471, | |
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.463768115942029, | |
"mmlu_eval_accuracy_public_relations": 0.3333333333333333, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 0.9897475262846087, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 0.64, | |
"learning_rate": 0.0002, | |
"loss": 0.9521, | |
"step": 1010 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 1.0668, | |
"step": 1020 | |
}, | |
{ | |
"epoch": 0.66, | |
"learning_rate": 0.0002, | |
"loss": 0.9922, | |
"step": 1030 | |
}, | |
{ | |
"epoch": 0.66, | |
"learning_rate": 0.0002, | |
"loss": 1.0092, | |
"step": 1040 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 0.9869, | |
"step": 1050 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 1.0046, | |
"step": 1060 | |
}, | |
{ | |
"epoch": 0.68, | |
"learning_rate": 0.0002, | |
"loss": 1.0184, | |
"step": 1070 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.9839, | |
"step": 1080 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.9943, | |
"step": 1090 | |
}, | |
{ | |
"epoch": 0.7, | |
"learning_rate": 0.0002, | |
"loss": 0.886, | |
"step": 1100 | |
}, | |
{ | |
"epoch": 0.71, | |
"learning_rate": 0.0002, | |
"loss": 0.9615, | |
"step": 1110 | |
}, | |
{ | |
"epoch": 0.71, | |
"learning_rate": 0.0002, | |
"loss": 1.0171, | |
"step": 1120 | |
}, | |
{ | |
"epoch": 0.72, | |
"learning_rate": 0.0002, | |
"loss": 0.9841, | |
"step": 1130 | |
}, | |
{ | |
"epoch": 0.72, | |
"learning_rate": 0.0002, | |
"loss": 1.0505, | |
"step": 1140 | |
}, | |
{ | |
"epoch": 0.73, | |
"learning_rate": 0.0002, | |
"loss": 1.0, | |
"step": 1150 | |
}, | |
{ | |
"epoch": 0.74, | |
"learning_rate": 0.0002, | |
"loss": 1.0334, | |
"step": 1160 | |
}, | |
{ | |
"epoch": 0.74, | |
"learning_rate": 0.0002, | |
"loss": 1.0645, | |
"step": 1170 | |
}, | |
{ | |
"epoch": 0.75, | |
"learning_rate": 0.0002, | |
"loss": 1.0085, | |
"step": 1180 | |
}, | |
{ | |
"epoch": 0.76, | |
"learning_rate": 0.0002, | |
"loss": 0.9845, | |
"step": 1190 | |
}, | |
{ | |
"epoch": 0.76, | |
"learning_rate": 0.0002, | |
"loss": 1.0293, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 0.76, | |
"eval_loss": 1.0063538551330566, | |
"eval_runtime": 172.7358, | |
"eval_samples_per_second": 5.789, | |
"eval_steps_per_second": 2.895, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 0.76, | |
"mmlu_eval_accuracy": 0.4524679151745841, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, | |
"mmlu_eval_accuracy_college_biology": 0.3125, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, | |
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, | |
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.4, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 1.021113502333432, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 0.77, | |
"learning_rate": 0.0002, | |
"loss": 1.0129, | |
"step": 1210 | |
}, | |
{ | |
"epoch": 0.78, | |
"learning_rate": 0.0002, | |
"loss": 1.0353, | |
"step": 1220 | |
}, | |
{ | |
"epoch": 0.78, | |
"learning_rate": 0.0002, | |
"loss": 1.0105, | |
"step": 1230 | |
}, | |
{ | |
"epoch": 0.79, | |
"learning_rate": 0.0002, | |
"loss": 1.0319, | |
"step": 1240 | |
}, | |
{ | |
"epoch": 0.79, | |
"learning_rate": 0.0002, | |
"loss": 1.0328, | |
"step": 1250 | |
}, | |
{ | |
"epoch": 0.8, | |
"learning_rate": 0.0002, | |
"loss": 1.0879, | |
"step": 1260 | |
}, | |
{ | |
"epoch": 0.81, | |
"learning_rate": 0.0002, | |
"loss": 0.9598, | |
"step": 1270 | |
}, | |
{ | |
"epoch": 0.81, | |
"learning_rate": 0.0002, | |
"loss": 0.9848, | |
"step": 1280 | |
}, | |
{ | |
"epoch": 0.82, | |
"learning_rate": 0.0002, | |
"loss": 0.9948, | |
"step": 1290 | |
}, | |
{ | |
"epoch": 0.83, | |
"learning_rate": 0.0002, | |
"loss": 0.9533, | |
"step": 1300 | |
}, | |
{ | |
"epoch": 0.83, | |
"learning_rate": 0.0002, | |
"loss": 0.9284, | |
"step": 1310 | |
}, | |
{ | |
"epoch": 0.84, | |
"learning_rate": 0.0002, | |
"loss": 0.9845, | |
"step": 1320 | |
}, | |
{ | |
"epoch": 0.85, | |
"learning_rate": 0.0002, | |
"loss": 1.0032, | |
"step": 1330 | |
}, | |
{ | |
"epoch": 0.85, | |
"learning_rate": 0.0002, | |
"loss": 0.9875, | |
"step": 1340 | |
}, | |
{ | |
"epoch": 0.86, | |
"learning_rate": 0.0002, | |
"loss": 1.015, | |
"step": 1350 | |
}, | |
{ | |
"epoch": 0.86, | |
"learning_rate": 0.0002, | |
"loss": 0.9766, | |
"step": 1360 | |
}, | |
{ | |
"epoch": 0.87, | |
"learning_rate": 0.0002, | |
"loss": 1.0295, | |
"step": 1370 | |
}, | |
{ | |
"epoch": 0.88, | |
"learning_rate": 0.0002, | |
"loss": 0.9226, | |
"step": 1380 | |
}, | |
{ | |
"epoch": 0.88, | |
"learning_rate": 0.0002, | |
"loss": 1.0241, | |
"step": 1390 | |
}, | |
{ | |
"epoch": 0.89, | |
"learning_rate": 0.0002, | |
"loss": 1.0129, | |
"step": 1400 | |
}, | |
{ | |
"epoch": 0.89, | |
"eval_loss": 1.0057677030563354, | |
"eval_runtime": 172.8484, | |
"eval_samples_per_second": 5.785, | |
"eval_steps_per_second": 2.893, | |
"step": 1400 | |
}, | |
{ | |
"epoch": 0.89, | |
"mmlu_eval_accuracy": 0.45964022370681756, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.64, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, | |
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 0.9177856030569997, | |
"step": 1400 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 4, | |
"total_flos": 2.6868938835315917e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |