prateeky2806's picture
Training in progress, step 1600
43f7db7
{
"best_metric": 1.0057677030563354,
"best_model_checkpoint": "./output_v2/7b_cluster07_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_07/checkpoint-1400",
"epoch": 1.0174880763116056,
"global_step": 1600,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 1.0736,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 1.1041,
"step": 20
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 1.0818,
"step": 30
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 1.0408,
"step": 40
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 1.0985,
"step": 50
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 1.0245,
"step": 60
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 1.0205,
"step": 70
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 1.0811,
"step": 80
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 1.0852,
"step": 90
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 1.0296,
"step": 100
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 1.0943,
"step": 110
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.9857,
"step": 120
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 1.0324,
"step": 130
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 1.0134,
"step": 140
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 1.0533,
"step": 150
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 1.0667,
"step": 160
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 1.0506,
"step": 170
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 1.0653,
"step": 180
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 1.0372,
"step": 190
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 1.0485,
"step": 200
},
{
"epoch": 0.13,
"eval_loss": 1.0341941118240356,
"eval_runtime": 172.5264,
"eval_samples_per_second": 5.796,
"eval_steps_per_second": 2.898,
"step": 200
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.4648810025502313,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.7093023255813954,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.115347789702621,
"step": 200
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.987,
"step": 210
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 1.0399,
"step": 220
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 1.044,
"step": 230
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 1.0491,
"step": 240
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 1.0216,
"step": 250
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 1.0973,
"step": 260
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.996,
"step": 270
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 1.0253,
"step": 280
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 1.0439,
"step": 290
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 1.0244,
"step": 300
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 1.0299,
"step": 310
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 1.0737,
"step": 320
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.9939,
"step": 330
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 1.032,
"step": 340
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 1.0291,
"step": 350
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 1.0575,
"step": 360
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 1.0685,
"step": 370
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 1.0342,
"step": 380
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 1.0055,
"step": 390
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 1.0584,
"step": 400
},
{
"epoch": 0.25,
"eval_loss": 1.0254805088043213,
"eval_runtime": 172.7517,
"eval_samples_per_second": 5.789,
"eval_steps_per_second": 2.894,
"step": 400
},
{
"epoch": 0.25,
"mmlu_eval_accuracy": 0.4742191978590581,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.37142857142857144,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.038680466208072,
"step": 400
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 1.0107,
"step": 410
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 1.0667,
"step": 420
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.9837,
"step": 430
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 1.0534,
"step": 440
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.9922,
"step": 450
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 1.0146,
"step": 460
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 1.0438,
"step": 470
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.9886,
"step": 480
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.988,
"step": 490
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 1.0228,
"step": 500
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 1.0173,
"step": 510
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.9993,
"step": 520
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 1.0261,
"step": 530
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.9884,
"step": 540
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.9894,
"step": 550
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 1.0305,
"step": 560
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.9754,
"step": 570
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 1.0075,
"step": 580
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 1.0219,
"step": 590
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 1.0059,
"step": 600
},
{
"epoch": 0.38,
"eval_loss": 1.0200624465942383,
"eval_runtime": 172.8545,
"eval_samples_per_second": 5.785,
"eval_steps_per_second": 2.893,
"step": 600
},
{
"epoch": 0.38,
"mmlu_eval_accuracy": 0.46940456315845464,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.37142857142857144,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0641063005121196,
"step": 600
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 1.0185,
"step": 610
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 1.0322,
"step": 620
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 1.0053,
"step": 630
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 1.0443,
"step": 640
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.9675,
"step": 650
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 1.0216,
"step": 660
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 1.0396,
"step": 670
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 1.0374,
"step": 680
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.9234,
"step": 690
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.9685,
"step": 700
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 1.0514,
"step": 710
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 1.0374,
"step": 720
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 1.036,
"step": 730
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.9701,
"step": 740
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.9619,
"step": 750
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 1.0571,
"step": 760
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 1.0154,
"step": 770
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 1.0092,
"step": 780
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 1.001,
"step": 790
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.9411,
"step": 800
},
{
"epoch": 0.51,
"eval_loss": 1.013809323310852,
"eval_runtime": 172.8017,
"eval_samples_per_second": 5.787,
"eval_steps_per_second": 2.893,
"step": 800
},
{
"epoch": 0.51,
"mmlu_eval_accuracy": 0.46531291628150345,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9923236886569476,
"step": 800
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.956,
"step": 810
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 1.0641,
"step": 820
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.9918,
"step": 830
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.9516,
"step": 840
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 1.0692,
"step": 850
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 1.0003,
"step": 860
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.949,
"step": 870
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.9744,
"step": 880
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 1.0029,
"step": 890
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 1.0229,
"step": 900
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 1.0498,
"step": 910
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 1.0292,
"step": 920
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 1.0674,
"step": 930
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 1.0258,
"step": 940
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.9771,
"step": 950
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.9876,
"step": 960
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.9789,
"step": 970
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 1.0642,
"step": 980
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.9753,
"step": 990
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.9893,
"step": 1000
},
{
"epoch": 0.64,
"eval_loss": 1.0121480226516724,
"eval_runtime": 172.7325,
"eval_samples_per_second": 5.789,
"eval_steps_per_second": 2.895,
"step": 1000
},
{
"epoch": 0.64,
"mmlu_eval_accuracy": 0.4561918495422321,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.3125,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.27906976744186046,
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5882352941176471,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.463768115942029,
"mmlu_eval_accuracy_public_relations": 0.3333333333333333,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9897475262846087,
"step": 1000
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.9521,
"step": 1010
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 1.0668,
"step": 1020
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.9922,
"step": 1030
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 1.0092,
"step": 1040
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.9869,
"step": 1050
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 1.0046,
"step": 1060
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 1.0184,
"step": 1070
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.9839,
"step": 1080
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.9943,
"step": 1090
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.886,
"step": 1100
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.9615,
"step": 1110
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 1.0171,
"step": 1120
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.9841,
"step": 1130
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 1.0505,
"step": 1140
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 1.0,
"step": 1150
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 1.0334,
"step": 1160
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 1.0645,
"step": 1170
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 1.0085,
"step": 1180
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.9845,
"step": 1190
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 1.0293,
"step": 1200
},
{
"epoch": 0.76,
"eval_loss": 1.0063538551330566,
"eval_runtime": 172.7358,
"eval_samples_per_second": 5.789,
"eval_steps_per_second": 2.895,
"step": 1200
},
{
"epoch": 0.76,
"mmlu_eval_accuracy": 0.4524679151745841,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.021113502333432,
"step": 1200
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 1.0129,
"step": 1210
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 1.0353,
"step": 1220
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 1.0105,
"step": 1230
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 1.0319,
"step": 1240
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 1.0328,
"step": 1250
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 1.0879,
"step": 1260
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.9598,
"step": 1270
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.9848,
"step": 1280
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.9948,
"step": 1290
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.9533,
"step": 1300
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.9284,
"step": 1310
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.9845,
"step": 1320
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 1.0032,
"step": 1330
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.9875,
"step": 1340
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 1.015,
"step": 1350
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.9766,
"step": 1360
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 1.0295,
"step": 1370
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.9226,
"step": 1380
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 1.0241,
"step": 1390
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 1.0129,
"step": 1400
},
{
"epoch": 0.89,
"eval_loss": 1.0057677030563354,
"eval_runtime": 172.8484,
"eval_samples_per_second": 5.785,
"eval_steps_per_second": 2.893,
"step": 1400
},
{
"epoch": 0.89,
"mmlu_eval_accuracy": 0.45964022370681756,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.64,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9177856030569997,
"step": 1400
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.982,
"step": 1410
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 1.0635,
"step": 1420
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.996,
"step": 1430
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.9793,
"step": 1440
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 1.0052,
"step": 1450
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.9909,
"step": 1460
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.9891,
"step": 1470
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 1.015,
"step": 1480
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 1.0233,
"step": 1490
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 1.079,
"step": 1500
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.9864,
"step": 1510
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.9793,
"step": 1520
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.9783,
"step": 1530
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.9897,
"step": 1540
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 1.051,
"step": 1550
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 1.0132,
"step": 1560
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 1.1073,
"step": 1570
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.9009,
"step": 1580
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.8841,
"step": 1590
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.9225,
"step": 1600
},
{
"epoch": 1.02,
"eval_loss": 1.0068118572235107,
"eval_runtime": 173.3247,
"eval_samples_per_second": 5.77,
"eval_steps_per_second": 2.885,
"step": 1600
},
{
"epoch": 1.02,
"mmlu_eval_accuracy": 0.4707131865952628,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.25,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6086956521739131,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3333333333333333,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.021920564319384,
"step": 1600
}
],
"max_steps": 5000,
"num_train_epochs": 4,
"total_flos": 3.0586580314251264e+17,
"trial_name": null,
"trial_params": null
}