{ "best_metric": 1.0121480226516724, "best_model_checkpoint": "./output_v2/7b_cluster07_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_07/checkpoint-1000", "epoch": 0.6359300476947536, "global_step": 1000, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.01, "learning_rate": 0.0002, "loss": 1.0736, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 1.1041, "step": 20 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 1.0818, "step": 30 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 1.0408, "step": 40 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 1.0985, "step": 50 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 1.0245, "step": 60 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 1.0205, "step": 70 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 1.0811, "step": 80 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 1.0852, "step": 90 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 1.0296, "step": 100 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 1.0943, "step": 110 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.9857, "step": 120 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 1.0324, "step": 130 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 1.0134, "step": 140 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 1.0533, "step": 150 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 1.0667, "step": 160 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 1.0506, "step": 170 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 1.0653, "step": 180 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 1.0372, "step": 190 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 1.0485, "step": 200 }, { "epoch": 0.13, "eval_loss": 1.0341941118240356, "eval_runtime": 172.5264, "eval_samples_per_second": 5.796, "eval_steps_per_second": 2.898, "step": 200 }, { "epoch": 0.13, "mmlu_eval_accuracy": 0.4648810025502313, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.7093023255813954, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.115347789702621, "step": 200 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.987, "step": 210 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 1.0399, "step": 220 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 1.044, "step": 230 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 1.0491, "step": 240 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 1.0216, "step": 250 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 1.0973, "step": 260 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.996, "step": 270 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 1.0253, "step": 280 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 1.0439, "step": 290 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 1.0244, "step": 300 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 1.0299, "step": 310 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 1.0737, "step": 320 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.9939, "step": 330 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 1.032, "step": 340 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 1.0291, "step": 350 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 1.0575, "step": 360 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 1.0685, "step": 370 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 1.0342, "step": 380 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 1.0055, "step": 390 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 1.0584, "step": 400 }, { "epoch": 0.25, "eval_loss": 1.0254805088043213, "eval_runtime": 172.7517, "eval_samples_per_second": 5.789, "eval_steps_per_second": 2.894, "step": 400 }, { "epoch": 0.25, "mmlu_eval_accuracy": 0.4742191978590581, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.038680466208072, "step": 400 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 1.0107, "step": 410 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 1.0667, "step": 420 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.9837, "step": 430 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 1.0534, "step": 440 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.9922, "step": 450 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 1.0146, "step": 460 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 1.0438, "step": 470 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.9886, "step": 480 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.988, "step": 490 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 1.0228, "step": 500 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 1.0173, "step": 510 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.9993, "step": 520 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 1.0261, "step": 530 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.9884, "step": 540 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.9894, "step": 550 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 1.0305, "step": 560 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.9754, "step": 570 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 1.0075, "step": 580 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 1.0219, "step": 590 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 1.0059, "step": 600 }, { "epoch": 0.38, "eval_loss": 1.0200624465942383, "eval_runtime": 172.8545, "eval_samples_per_second": 5.785, "eval_steps_per_second": 2.893, "step": 600 }, { "epoch": 0.38, "mmlu_eval_accuracy": 0.46940456315845464, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.37142857142857144, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.0641063005121196, "step": 600 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 1.0185, "step": 610 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 1.0322, "step": 620 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 1.0053, "step": 630 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 1.0443, "step": 640 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.9675, "step": 650 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 1.0216, "step": 660 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 1.0396, "step": 670 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 1.0374, "step": 680 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.9234, "step": 690 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.9685, "step": 700 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 1.0514, "step": 710 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 1.0374, "step": 720 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 1.036, "step": 730 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.9701, "step": 740 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.9619, "step": 750 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 1.0571, "step": 760 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 1.0154, "step": 770 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 1.0092, "step": 780 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 1.001, "step": 790 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.9411, "step": 800 }, { "epoch": 0.51, "eval_loss": 1.013809323310852, "eval_runtime": 172.8017, "eval_samples_per_second": 5.787, "eval_steps_per_second": 2.893, "step": 800 }, { "epoch": 0.51, "mmlu_eval_accuracy": 0.46531291628150345, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9923236886569476, "step": 800 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.956, "step": 810 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 1.0641, "step": 820 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.9918, "step": 830 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.9516, "step": 840 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 1.0692, "step": 850 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 1.0003, "step": 860 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.949, "step": 870 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.9744, "step": 880 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 1.0029, "step": 890 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 1.0229, "step": 900 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 1.0498, "step": 910 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 1.0292, "step": 920 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 1.0674, "step": 930 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 1.0258, "step": 940 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.9771, "step": 950 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.9876, "step": 960 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.9789, "step": 970 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 1.0642, "step": 980 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.9753, "step": 990 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.9893, "step": 1000 }, { "epoch": 0.64, "eval_loss": 1.0121480226516724, "eval_runtime": 172.7325, "eval_samples_per_second": 5.789, "eval_steps_per_second": 2.895, "step": 1000 }, { "epoch": 0.64, "mmlu_eval_accuracy": 0.4561918495422321, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.27906976744186046, "mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.5882352941176471, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.463768115942029, "mmlu_eval_accuracy_public_relations": 0.3333333333333333, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9897475262846087, "step": 1000 } ], "max_steps": 5000, "num_train_epochs": 4, "total_flos": 1.9149438415660646e+17, "trial_name": null, "trial_params": null }