prateeky2806's picture
Training in progress, step 800
36111e6
raw
history blame
24.9 kB
{
"best_metric": 0.5022817254066467,
"best_model_checkpoint": "./output_v2/7b_cluster09_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_09/checkpoint-800",
"epoch": 0.9864364981504316,
"global_step": 800,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.597,
"step": 10
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.5778,
"step": 20
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.5677,
"step": 30
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5528,
"step": 40
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5558,
"step": 50
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.5571,
"step": 60
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5499,
"step": 70
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.5491,
"step": 80
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.5407,
"step": 90
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.5492,
"step": 100
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.5258,
"step": 110
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.5217,
"step": 120
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.538,
"step": 130
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.5265,
"step": 140
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.5344,
"step": 150
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.5361,
"step": 160
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.5186,
"step": 170
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.5312,
"step": 180
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.5395,
"step": 190
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.5399,
"step": 200
},
{
"epoch": 0.25,
"eval_loss": 0.533891499042511,
"eval_runtime": 249.6236,
"eval_samples_per_second": 4.006,
"eval_steps_per_second": 2.003,
"step": 200
},
{
"epoch": 0.25,
"mmlu_eval_accuracy": 0.46207163729626294,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.267449478023046,
"step": 200
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.524,
"step": 210
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.5484,
"step": 220
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.5247,
"step": 230
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.5305,
"step": 240
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5179,
"step": 250
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.5408,
"step": 260
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.5472,
"step": 270
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.5136,
"step": 280
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.5262,
"step": 290
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.5361,
"step": 300
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.5007,
"step": 310
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.5211,
"step": 320
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5217,
"step": 330
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5337,
"step": 340
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.5113,
"step": 350
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.518,
"step": 360
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.5151,
"step": 370
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.5133,
"step": 380
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.5083,
"step": 390
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.5235,
"step": 400
},
{
"epoch": 0.49,
"eval_loss": 0.5213926434516907,
"eval_runtime": 249.5749,
"eval_samples_per_second": 4.007,
"eval_steps_per_second": 2.003,
"step": 400
},
{
"epoch": 0.49,
"mmlu_eval_accuracy": 0.45812855653406065,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3333333333333333,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1127305320092031,
"step": 400
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.5194,
"step": 410
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.5279,
"step": 420
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.5105,
"step": 430
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.5427,
"step": 440
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.5276,
"step": 450
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.4865,
"step": 460
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.5161,
"step": 470
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.513,
"step": 480
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.5284,
"step": 490
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.5101,
"step": 500
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.5218,
"step": 510
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.5087,
"step": 520
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.5157,
"step": 530
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.501,
"step": 540
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.508,
"step": 550
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.5199,
"step": 560
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.5043,
"step": 570
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.5069,
"step": 580
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.5258,
"step": 590
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.5189,
"step": 600
},
{
"epoch": 0.74,
"eval_loss": 0.5119001865386963,
"eval_runtime": 249.8867,
"eval_samples_per_second": 4.002,
"eval_steps_per_second": 2.001,
"step": 600
},
{
"epoch": 0.74,
"mmlu_eval_accuracy": 0.45806114323766334,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3333333333333333,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1718710024425318,
"step": 600
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.5234,
"step": 610
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.5205,
"step": 620
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.5146,
"step": 630
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.5094,
"step": 640
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.4959,
"step": 650
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.5001,
"step": 660
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.5007,
"step": 670
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.5029,
"step": 680
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.5143,
"step": 690
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.4983,
"step": 700
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.4995,
"step": 710
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.5072,
"step": 720
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.499,
"step": 730
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.505,
"step": 740
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.4917,
"step": 750
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.4983,
"step": 760
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.4946,
"step": 770
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.4931,
"step": 780
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.4836,
"step": 790
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.5001,
"step": 800
},
{
"epoch": 0.99,
"eval_loss": 0.5022817254066467,
"eval_runtime": 249.7465,
"eval_samples_per_second": 4.004,
"eval_steps_per_second": 2.002,
"step": 800
},
{
"epoch": 0.99,
"mmlu_eval_accuracy": 0.45223086902107806,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.5454545454545454,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.064671132450938,
"step": 800
}
],
"max_steps": 5000,
"num_train_epochs": 7,
"total_flos": 2.1743088982061875e+17,
"trial_name": null,
"trial_params": null
}