prateeky2806's picture
Training in progress, step 400
d09228c
{
"best_metric": 0.5213926434516907,
"best_model_checkpoint": "./output_v2/7b_cluster09_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_09/checkpoint-400",
"epoch": 0.4932182490752158,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.597,
"step": 10
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.5778,
"step": 20
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.5677,
"step": 30
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5528,
"step": 40
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5558,
"step": 50
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.5571,
"step": 60
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5499,
"step": 70
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.5491,
"step": 80
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.5407,
"step": 90
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.5492,
"step": 100
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.5258,
"step": 110
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.5217,
"step": 120
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.538,
"step": 130
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.5265,
"step": 140
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.5344,
"step": 150
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.5361,
"step": 160
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.5186,
"step": 170
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.5312,
"step": 180
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.5395,
"step": 190
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.5399,
"step": 200
},
{
"epoch": 0.25,
"eval_loss": 0.533891499042511,
"eval_runtime": 249.6236,
"eval_samples_per_second": 4.006,
"eval_steps_per_second": 2.003,
"step": 200
},
{
"epoch": 0.25,
"mmlu_eval_accuracy": 0.46207163729626294,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.267449478023046,
"step": 200
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.524,
"step": 210
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.5484,
"step": 220
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.5247,
"step": 230
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.5305,
"step": 240
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5179,
"step": 250
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.5408,
"step": 260
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.5472,
"step": 270
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.5136,
"step": 280
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.5262,
"step": 290
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.5361,
"step": 300
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.5007,
"step": 310
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.5211,
"step": 320
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5217,
"step": 330
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5337,
"step": 340
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.5113,
"step": 350
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.518,
"step": 360
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.5151,
"step": 370
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.5133,
"step": 380
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.5083,
"step": 390
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.5235,
"step": 400
},
{
"epoch": 0.49,
"eval_loss": 0.5213926434516907,
"eval_runtime": 249.5749,
"eval_samples_per_second": 4.007,
"eval_steps_per_second": 2.003,
"step": 400
},
{
"epoch": 0.49,
"mmlu_eval_accuracy": 0.45812855653406065,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3333333333333333,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1127305320092031,
"step": 400
}
],
"max_steps": 5000,
"num_train_epochs": 7,
"total_flos": 1.0863620621697024e+17,
"trial_name": null,
"trial_params": null
}