{ "best_metric": 0.48671162128448486, "best_model_checkpoint": "./output_v2/7b_cluster09_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_09/checkpoint-1600", "epoch": 1.972872996300863, "global_step": 1600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.597, "step": 10 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.5778, "step": 20 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.5677, "step": 30 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5528, "step": 40 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5558, "step": 50 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.5571, "step": 60 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.5499, "step": 70 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.5491, "step": 80 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.5407, "step": 90 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.5492, "step": 100 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.5258, "step": 110 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.5217, "step": 120 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.538, "step": 130 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.5265, "step": 140 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.5344, "step": 150 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.5361, "step": 160 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5186, "step": 170 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.5312, "step": 180 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.5395, "step": 190 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.5399, "step": 200 }, { "epoch": 0.25, "eval_loss": 0.533891499042511, "eval_runtime": 249.6236, "eval_samples_per_second": 4.006, "eval_steps_per_second": 2.003, "step": 200 }, { "epoch": 0.25, "mmlu_eval_accuracy": 0.46207163729626294, "mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.267449478023046, "step": 200 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.524, "step": 210 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5484, "step": 220 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.5247, "step": 230 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5305, "step": 240 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.5179, "step": 250 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.5408, "step": 260 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.5472, "step": 270 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.5136, "step": 280 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.5262, "step": 290 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.5361, "step": 300 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5007, "step": 310 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.5211, "step": 320 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.5217, "step": 330 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5337, "step": 340 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.5113, "step": 350 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.518, "step": 360 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.5151, "step": 370 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.5133, "step": 380 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.5083, "step": 390 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5235, "step": 400 }, { "epoch": 0.49, "eval_loss": 0.5213926434516907, "eval_runtime": 249.5749, "eval_samples_per_second": 4.007, "eval_steps_per_second": 2.003, "step": 400 }, { "epoch": 0.49, "mmlu_eval_accuracy": 0.45812855653406065, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3333333333333333, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1127305320092031, "step": 400 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5194, "step": 410 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.5279, "step": 420 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5105, "step": 430 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.5427, "step": 440 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.5276, "step": 450 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.4865, "step": 460 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.5161, "step": 470 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.513, "step": 480 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.5284, "step": 490 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.5101, "step": 500 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.5218, "step": 510 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.5087, "step": 520 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.5157, "step": 530 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.501, "step": 540 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.508, "step": 550 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.5199, "step": 560 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.5043, "step": 570 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.5069, "step": 580 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.5258, "step": 590 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.5189, "step": 600 }, { "epoch": 0.74, "eval_loss": 0.5119001865386963, "eval_runtime": 249.8867, "eval_samples_per_second": 4.002, "eval_steps_per_second": 2.001, "step": 600 }, { "epoch": 0.74, "mmlu_eval_accuracy": 0.45806114323766334, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3333333333333333, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1718710024425318, "step": 600 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.5234, "step": 610 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.5205, "step": 620 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.5146, "step": 630 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.5094, "step": 640 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.4959, "step": 650 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.5001, "step": 660 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.5007, "step": 670 }, { "epoch": 0.84, "learning_rate": 0.0002, "loss": 0.5029, "step": 680 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.5143, "step": 690 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.4983, "step": 700 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.4995, "step": 710 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.5072, "step": 720 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.499, "step": 730 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.505, "step": 740 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.4917, "step": 750 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.4983, "step": 760 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.4946, "step": 770 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.4931, "step": 780 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.4836, "step": 790 }, { "epoch": 0.99, "learning_rate": 0.0002, "loss": 0.5001, "step": 800 }, { "epoch": 0.99, "eval_loss": 0.5022817254066467, "eval_runtime": 249.7465, "eval_samples_per_second": 4.004, "eval_steps_per_second": 2.002, "step": 800 }, { "epoch": 0.99, "mmlu_eval_accuracy": 0.45223086902107806, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.064671132450938, "step": 800 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.5135, "step": 810 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.4532, "step": 820 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.4483, "step": 830 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.4507, "step": 840 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.4572, "step": 850 }, { "epoch": 1.06, "learning_rate": 0.0002, "loss": 0.4346, "step": 860 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.4306, "step": 870 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.439, "step": 880 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.4215, "step": 890 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.4608, "step": 900 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.4345, "step": 910 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.422, "step": 920 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.4444, "step": 930 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.4649, "step": 940 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.4508, "step": 950 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.439, "step": 960 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.4347, "step": 970 }, { "epoch": 1.21, "learning_rate": 0.0002, "loss": 0.4413, "step": 980 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.4337, "step": 990 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.4358, "step": 1000 }, { "epoch": 1.23, "eval_loss": 0.5019292235374451, "eval_runtime": 249.7097, "eval_samples_per_second": 4.005, "eval_steps_per_second": 2.002, "step": 1000 }, { "epoch": 1.23, "mmlu_eval_accuracy": 0.46197732544268794, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.3188405797101449, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.103624303117589, "step": 1000 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.4428, "step": 1010 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.4306, "step": 1020 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.4585, "step": 1030 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.4323, "step": 1040 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.4333, "step": 1050 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.4364, "step": 1060 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.4256, "step": 1070 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.4197, "step": 1080 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.4382, "step": 1090 }, { "epoch": 1.36, "learning_rate": 0.0002, "loss": 0.4489, "step": 1100 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.4152, "step": 1110 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.425, "step": 1120 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.4537, "step": 1130 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.4496, "step": 1140 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.4266, "step": 1150 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.4449, "step": 1160 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.4381, "step": 1170 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.4272, "step": 1180 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.4366, "step": 1190 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.428, "step": 1200 }, { "epoch": 1.48, "eval_loss": 0.4976211488246918, "eval_runtime": 249.5918, "eval_samples_per_second": 4.007, "eval_steps_per_second": 2.003, "step": 1200 }, { "epoch": 1.48, "mmlu_eval_accuracy": 0.4642275199494228, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.48484848484848486, "mmlu_eval_accuracy_philosophy": 0.38235294117647056, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0431902918079503, "step": 1200 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.4388, "step": 1210 }, { "epoch": 1.5, "learning_rate": 0.0002, "loss": 0.4396, "step": 1220 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.448, "step": 1230 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.4294, "step": 1240 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.427, "step": 1250 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.4464, "step": 1260 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.4319, "step": 1270 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.4297, "step": 1280 }, { "epoch": 1.59, "learning_rate": 0.0002, "loss": 0.4266, "step": 1290 }, { "epoch": 1.6, "learning_rate": 0.0002, "loss": 0.4567, "step": 1300 }, { "epoch": 1.62, "learning_rate": 0.0002, "loss": 0.4496, "step": 1310 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.4408, "step": 1320 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.4487, "step": 1330 }, { "epoch": 1.65, "learning_rate": 0.0002, "loss": 0.4168, "step": 1340 }, { "epoch": 1.66, "learning_rate": 0.0002, "loss": 0.4418, "step": 1350 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.4288, "step": 1360 }, { "epoch": 1.69, "learning_rate": 0.0002, "loss": 0.4305, "step": 1370 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.425, "step": 1380 }, { "epoch": 1.71, "learning_rate": 0.0002, "loss": 0.4247, "step": 1390 }, { "epoch": 1.73, "learning_rate": 0.0002, "loss": 0.4276, "step": 1400 }, { "epoch": 1.73, "eval_loss": 0.49078691005706787, "eval_runtime": 249.9521, "eval_samples_per_second": 4.001, "eval_steps_per_second": 2.0, "step": 1400 }, { "epoch": 1.73, "mmlu_eval_accuracy": 0.46579887678101295, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.6363636363636364, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.38235294117647056, "mmlu_eval_accuracy_prehistory": 0.5714285714285714, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.3188405797101449, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1886581055839442, "step": 1400 }, { "epoch": 1.74, "learning_rate": 0.0002, "loss": 0.4448, "step": 1410 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.4305, "step": 1420 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.4262, "step": 1430 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.4274, "step": 1440 }, { "epoch": 1.79, "learning_rate": 0.0002, "loss": 0.4375, "step": 1450 }, { "epoch": 1.8, "learning_rate": 0.0002, "loss": 0.4295, "step": 1460 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.439, "step": 1470 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.4182, "step": 1480 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.4162, "step": 1490 }, { "epoch": 1.85, "learning_rate": 0.0002, "loss": 0.4348, "step": 1500 }, { "epoch": 1.86, "learning_rate": 0.0002, "loss": 0.4407, "step": 1510 }, { "epoch": 1.87, "learning_rate": 0.0002, "loss": 0.4213, "step": 1520 }, { "epoch": 1.89, "learning_rate": 0.0002, "loss": 0.4188, "step": 1530 }, { "epoch": 1.9, "learning_rate": 0.0002, "loss": 0.4591, "step": 1540 }, { "epoch": 1.91, "learning_rate": 0.0002, "loss": 0.4098, "step": 1550 }, { "epoch": 1.92, "learning_rate": 0.0002, "loss": 0.4331, "step": 1560 }, { "epoch": 1.94, "learning_rate": 0.0002, "loss": 0.4383, "step": 1570 }, { "epoch": 1.95, "learning_rate": 0.0002, "loss": 0.4334, "step": 1580 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.4363, "step": 1590 }, { "epoch": 1.97, "learning_rate": 0.0002, "loss": 0.4227, "step": 1600 }, { "epoch": 1.97, "eval_loss": 0.48671162128448486, "eval_runtime": 249.6163, "eval_samples_per_second": 4.006, "eval_steps_per_second": 2.003, "step": 1600 }, { "epoch": 1.97, "mmlu_eval_accuracy": 0.4663407571795711, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.6363636363636364, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.6363636363636364, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.48484848484848486, "mmlu_eval_accuracy_philosophy": 0.3235294117647059, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.30434782608695654, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 1.050787725118682, "step": 1600 } ], "max_steps": 5000, "num_train_epochs": 7, "total_flos": 4.3469330742204826e+17, "trial_name": null, "trial_params": null }