--- license: apache-2.0 datasets: - google/cvss language: - en - fr metrics: - bleu --- # NAST-S2X: A Fast and End-to-End Simultaneous Speech-to-Any Translation Model

## Features * 🤖 **An end-to-end model without intermediate text decoding** * 💪 **Supports offline and streaming decoding of all modalities** * ⚡️ **28× faster inference compared to autoregressive models** ## Examples #### We present an example of French-to-English translation using chunk sizes of 320 ms, 2560 ms, and in offline conditions. * Generation with chunk sizes of 320 ms and 2560 ms starts generating English translation before the source speech is complete. * In the examples of simultaneous interpretation, the left audio channel is the input streaming speech, and the right audio channel is the simultaneous translation. > [!NOTE] > For a better experience, please wear headphones. |Chunk Size 320ms | Chunk Size 2560ms | Offline| :-------------------------:|:-------------------------: |:-------------------------: | | Source Speech Transcript | Reference Text Translation :-------------------------:|:-------------------------: Avant la fusion des communes, Rouge-Thier faisait partie de la commune de Louveigné.| before the fusion of the towns rouge thier was a part of the town of louveigne > [!NOTE] > For more examples, please check https://nast-s2x.github.io/. ## Performance * ⚡️ **Lightning Fast**: 28× faster inference and competitive quality in offline speech-to-speech translation * 👩‍💼 **Simultaneous**: Achieves high-quality simultaneous interpretation within a delay of less than 3 seconds * 🤖 **Unified Framework**: Support end-to-end text & speech generation in one model **Check Details** 👇 | Offline-S2S | :-------------------------: ![image](https://github.com/ictnlp/NAST-S2x/assets/43530347/abf6931f-c6be-4870-8f58-3a338e3b2b5c)| | Simul-S2S | Simul-S2T| :-------------------------:|:-------------------------: ![image](https://github.com/ictnlp/NAST-S2x/assets/43530347/9a57bf02-c606-4a78-af3e-1c0d1f25d27e) | ![image](https://github.com/ictnlp/NAST-S2x/assets/43530347/6ecfe401-770c-4dc0-9c50-e76a8c20b84b) ## Architecture

* **Fully Non-autoregressive:** Trained with **CTC-based non-monotonic latent alignment loss [(Shao and Feng, 2022)](https://arxiv.org/abs/2210.03953)** and **glancing mechanism [(Qian et al., 2021)](https://arxiv.org/abs/2008.07905)**. * **Minimum Human Design:** Seamlessly switch between offline translation and simultaneous interpretation **by adjusting the chunk size**. * **End-to-End:** Generate target speech **without** target text decoding. # Sources and Usage ## Model > [!NOTE] > We release French-to-English speech-to-speech translation models trained on the CVSS-C dataset to reproduce results in our paper. You can train models in your desired languages by following the instructions provided below. [🤗 Model card](https://huggingface.co/ICTNLP/NAST-S2X) | Chunk Size | checkpoint | ASR-BLEU | ASR-BLEU (Silence Removed) | Average Lagging | | ----------------------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------- |---------------------------------------------------------------- | | 320ms | [checkpoint](https://huggingface.co/ICTNLP/NAST-S2X/blob/main/chunk_320ms.pt) | 19.67 | 24.90 | -393ms | | 1280ms | [checkpoint](https://huggingface.co/ICTNLP/NAST-S2X/blob/main/chunk_1280ms.pt) | 20.20 | 25.71 | 3330ms | | 2560ms | [checkpoint](https://huggingface.co/ICTNLP/NAST-S2X/blob/main/chunk_2560ms.pt) | 24.88 | 26.14 | 4976ms | | Offline | [checkpoint](https://huggingface.co/ICTNLP/NAST-S2X/blob/main/Offline.pt) | 25.82 | - | - | | Vocoder | | --- | |

[checkpoint](https://huggingface.co/ICTNLP/NAST-S2X/tree/main/vocoder)

| ## Inference > [!WARNING] > Before executing all the provided shell scripts, please ensure to replace the variables in the file with the paths specific to your machine. ### Offline Inference * **Data preprocessing**: Follow the instructions in the [document](https://github.com/ictnlp/NAST-S2x/blob/main/Preprocessing.md). * **Generate Acoustic Unit**: Excute [``offline_s2u_infer.sh``](https://github.com/ictnlp/NAST-S2x/blob/main/test_scripts/offline_s2u_infer.sh) * **Generate Waveform**: Excute [``offline_wav_infer.sh``](https://github.com/ictnlp/NAST-S2x/blob/main/test_scripts/offline_wav_infer.sh) * **Evaluation**: Using Fairseq's [ASR-BLEU evaluation toolkit](https://github.com/facebookresearch/fairseq/tree/main/examples/speech_to_speech/asr_bleu) ### Simultaneous Inference * We use our customized fork of [``SimulEval: b43a7c``](https://github.com/Paulmzr/SimulEval/tree/b43a7c7a9f20bb4c2ff48cf1bc573b4752d7081e) to evaluate the model in simultaneous inference. This repository is built upon the official [``SimulEval: a1435b``](https://github.com/facebookresearch/SimulEval/tree/a1435b65331cac9d62ea8047fe3344153d7e7dac) and includes additional latency scorers. * **Data preprocessing**: Follow the instructions in the [document](https://github.com/ictnlp/NAST-S2x/blob/main/Preprocessing.md). * **Streaming Generation and Evaluation**: Excute [``streaming_infer.sh``](https://github.com/ictnlp/NAST-S2x/blob/main/test_scripts/streaming_infer.sh) ## Train your own NAST-S2X * **Data preprocessing**: Follow the instructions in the [document](https://github.com/ictnlp/NAST-S2x/blob/main/Preprocessing.md). * **CTC Pretraining**: Excute [``train_ctc.sh``](https://github.com/ictnlp/NAST-S2x/blob/main/train_scripts/train_ctc.sh) * **NMLA Training**: Excute [``train_nmla.sh``](https://github.com/ictnlp/NAST-S2x/blob/main/train_scripts/train_nmla.sh) ## Citing Please kindly cite us if you find our papers or codes useful. ``` @inproceedings{ ma2024nonautoregressive, title={A Non-autoregressive Generation Framework for End-to-End Simultaneous Speech-to-Any Translation}, author={Ma, Zhengrui and Fang, Qingkai and Zhang, Shaolei and Guo, Shoutao and Feng, Yang and Zhang, Min }, booktitle={Proceedings of ACL 2024}, year={2024}, } @inproceedings{ fang2024ctcs2ut, title={CTC-based Non-autoregressive Textless Speech-to-Speech Translation}, author={Fang, Qingkai and Ma, Zhengrui and Zhou, Yan and Zhang, Min and Feng, Yang }, booktitle={Findings of ACL 2024}, year={2024}, } ```