Update README.md
Browse files
README.md
CHANGED
@@ -30,7 +30,7 @@ A bidirectional language model based on the Encoder structure, focusing on solvi
|
|
30 |
We follow [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), using 32 A100s and spending 14 days training a billion-level BERT on WuDao Corpora (180 GB version). Given Chinese grammar and the difficulty of large-scale training, we use four pre-training procedures to improve BERT: 1) Whole Word Masking (WWM), 2) Knowledge-based Dynamic Masking (KDM), 3) Sentence Order Prediction (SOP), 4) Pre-layer Normalization (Pre-LN).
|
31 |
|
32 |
## 成就 Achievement
|
33 |
-
1.2021年11月10日,二郎神在FewCLUE上取得第一。其中,它在CHIDF(成语填空)和TNEWS(新闻分类)子任务中的表现优于人类表现。此外,它在CHIDF(成语填空), CSLDCP(学科文献分类), OCNLI(自然语言推理)
|
34 |
2.2022年1月24日,二郎神在CLUE基准测试中的ZeroCLUE中取得第一。具体到子任务,我们在CSLDCP(主题文献分类), TNEWS(新闻分类), IFLYTEK(应用描述分类), CSL(抽象关键字识别)和CLUEWSC(参考消歧)任务中取得第一。
|
35 |
3.在2022年7月10日,我们在CLUE基准的语义匹配任务中取得第一。
|
36 |
|
|
|
30 |
We follow [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), using 32 A100s and spending 14 days training a billion-level BERT on WuDao Corpora (180 GB version). Given Chinese grammar and the difficulty of large-scale training, we use four pre-training procedures to improve BERT: 1) Whole Word Masking (WWM), 2) Knowledge-based Dynamic Masking (KDM), 3) Sentence Order Prediction (SOP), 4) Pre-layer Normalization (Pre-LN).
|
31 |
|
32 |
## 成就 Achievement
|
33 |
+
1.2021年11月10日,二郎神在FewCLUE上取得第一。其中,它在CHIDF(成语填空)和TNEWS(新闻分类)子任务中的表现优于人类表现。此外,它在CHIDF(成语填空), CSLDCP(学科文献分类), OCNLI(自然语言推理)任务中均名列前茅。
|
34 |
2.2022年1月24日,二郎神在CLUE基准测试中的ZeroCLUE中取得第一。具体到子任务,我们在CSLDCP(主题文献分类), TNEWS(新闻分类), IFLYTEK(应用描述分类), CSL(抽象关键字识别)和CLUEWSC(参考消歧)任务中取得第一。
|
35 |
3.在2022年7月10日,我们在CLUE基准的语义匹配任务中取得第一。
|
36 |
|