dongxiaoqun
commited on
Commit
•
4970603
1
Parent(s):
92c30e0
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
inference: False
|
6 |
+
---
|
7 |
+
|
8 |
+
IDEA-CCNL/Randeng_Pegasus_238M_Summary_Chinese model (Chinese) has 238M million parameter, pretrained on 180G Chinese data with GSG task which is stochastically sample important sentences with sampled gap sentence ratios by 25%. The pretraining task just as same as the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization mentioned.
|
9 |
+
|
10 |
+
Different from the English version of pegasus, considering that the Chinese sentence piece is unstable, we use jieba and Bertokenizer as the tokenizer in chinese pegasus model.
|
11 |
+
|
12 |
+
After pre-training, We use 8 summary datasets which we collect on the internet to do the supervised training. The 8 datasets include education_data, new2016zh_data, nlpcc, shence_data, sohu_data, thucnews_data and weibo_data, four million training samples in all.
|
13 |
+
|
14 |
+
|
15 |
+
Task: Summarization
|
16 |
+
## Usage
|
17 |
+
```python
|
18 |
+
|
19 |
+
from transformers import PegasusForConditionalGeneration
|
20 |
+
# Need to download tokenizers_pegasus.py and other Python script from Fengshenbang-LM github repo in advance,
|
21 |
+
# or you can download tokenizers_pegasus.py and data_utils.py in https://huggingface.co/IDEA-CCNL/Randeng_Pegasus_523M/tree/main
|
22 |
+
# Strongly recommend you git clone the Fengshenbang-LM repo:
|
23 |
+
# 1. git clone https://github.com/IDEA-CCNL/Fengshenbang-LM
|
24 |
+
# 2. cd Fengshenbang-LM/fengshen/examples/pegasus/
|
25 |
+
# and then you will see the tokenizers_pegasus.py and data_utils.py which are needed by pegasus model
|
26 |
+
from tokenizers_pegasus import PegasusTokenizer
|
27 |
+
|
28 |
+
model = PegasusForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese")
|
29 |
+
tokenizer = PegasusTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese")
|
30 |
+
|
31 |
+
text = "在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!"
|
32 |
+
inputs = tokenizer(text, max_length=1024, return_tensors="pt")
|
33 |
+
|
34 |
+
# Generate Summary
|
35 |
+
summary_ids = model.generate(inputs["input_ids"])
|
36 |
+
tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
37 |
+
|
38 |
+
# model Output: 滑雪女子坡面障碍技巧决赛:中国选手谷爱凌摘银
|
39 |
+
```
|
40 |
+
|
41 |
+
## Citation
|
42 |
+
If you find the resource is useful, please cite the following website in your paper.
|
43 |
+
```
|
44 |
+
@misc{Fengshenbang-LM,
|
45 |
+
title={Fengshenbang-LM},
|
46 |
+
author={IDEA-CCNL},
|
47 |
+
year={2022},
|
48 |
+
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
|
49 |
+
}
|
50 |
+
```
|