File size: 7,246 Bytes
178190e
daa54e8
 
 
173b15d
daa54e8
173b15d
 
 
 
 
 
daa54e8
173b15d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178190e
daa54e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1aa1a3
 
 
 
 
 
 
daa54e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173b15d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
language:
- bg
- en
license: apache-2.0
library_name: transformers
tags:
- mistral
- instruct
- bggpt
- insait
base_model: mistralai/Mistral-7B-v0.1
pipeline_tag: text-generation
model-index:
- name: BgGPT-7B-Instruct-v0.2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.58
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.18
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.5
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 54.63
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.48
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 44.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
      name: Open LLM Leaderboard
---
# INSAIT-Institute/BgGPT-7B-Instruct-v0.2

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/p6d0YFHjWCQ3S12jWqO1m.png)

Meet BgGPT-7B, a Bulgarian language model trained from mistralai/Mistral-7B-v0.1. BgGPT is distributed under Apache 2.0 license.

This model was created by [`INSAIT Institute`](https://insait.ai/), part of Sofia University, in Sofia, Bulgaria.

This is an improved version of the model - v0.2.

## Model description

The model is continously pretrained to gain its Bulgarian language and culture capabilities using multiple datasets, including Bulgarian web crawl data, a range of specialized Bulgarian datasets sourced by INSAIT Institute, and machine translations of popular English datasets. 
This Bulgarian data was augmented with English datasets to retain English and logical reasoning skills.

The model's tokenizer has been extended to allow for a more efficient encoding of Bulgarian words written in Cyrillic. 
This not only increases throughput of Cyrillic text but also performance. 

## Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. 
The very first instruction should begin with a begin of sequence token `<s>`. Following instructions should not. 
The assistant generation will be ended by the end-of-sequence token.

E.g.
```
text = "<s>[INST] Кога е основан Софийският университет? [/INST]"
"Софийският университет „Св. Климент Охридски“ е създаден на 1 октомври 1888 г.</s> "
"[INST] Кой го е основал? [/INST]"
```

This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:

## Benchmarks

The model comes with a set of Benchmarks that are translations of the corresponding English-benchmarks. These are provided at [`https://github.com/insait-institute/lm-evaluation-harness-bg`](https://github.com/insait-institute/lm-evaluation-harness-bg)

As this is an improved version over version 0.1 of the same model and we include benchmark comparisons.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/aZAEv5qyLcPn5p4KrHpEw.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/6PafMC6StfUaPY1N8Xrta.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/L1bKXq4Xiik1ZbTDuCnxj.png)

## Summary
- **Finetuned from:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Model type:** Causal decoder-only transformer language model
- **Language:** Bulgarian and English
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
- **Contact:** [bggpt@insait.ai](mailto:bggpt@insait.ai)

## Use in 🤗Transformers
First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
    model="INSAIT-Institute/BgGPT-7B-Instruct-v0.2",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    use_flash_attn_2=True # optional
)
```

## Use with GGML / llama.cpp

The model in GGUF format [INSAIT-Institute/BgGPT-7B-Instruct-v0.2-GGUF](https://huggingface.co/INSAIT-Institute/BgGPT-7B-Instruct-v0.2-GGUF)

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_INSAIT-Institute__BgGPT-7B-Instruct-v0.2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |63.08|
|AI2 Reasoning Challenge (25-Shot)|60.58|
|HellaSwag (10-Shot)              |82.18|
|MMLU (5-Shot)                    |60.50|
|TruthfulQA (0-shot)              |54.63|
|Winogrande (5-shot)              |76.48|
|GSM8k (5-shot)                   |44.12|