File size: 7,246 Bytes
178190e daa54e8 173b15d daa54e8 173b15d daa54e8 173b15d 178190e daa54e8 e1aa1a3 daa54e8 173b15d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
language:
- bg
- en
license: apache-2.0
library_name: transformers
tags:
- mistral
- instruct
- bggpt
- insait
base_model: mistralai/Mistral-7B-v0.1
pipeline_tag: text-generation
model-index:
- name: BgGPT-7B-Instruct-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.58
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.18
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.63
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 44.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=INSAIT-Institute/BgGPT-7B-Instruct-v0.2
name: Open LLM Leaderboard
---
# INSAIT-Institute/BgGPT-7B-Instruct-v0.2
![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/p6d0YFHjWCQ3S12jWqO1m.png)
Meet BgGPT-7B, a Bulgarian language model trained from mistralai/Mistral-7B-v0.1. BgGPT is distributed under Apache 2.0 license.
This model was created by [`INSAIT Institute`](https://insait.ai/), part of Sofia University, in Sofia, Bulgaria.
This is an improved version of the model - v0.2.
## Model description
The model is continously pretrained to gain its Bulgarian language and culture capabilities using multiple datasets, including Bulgarian web crawl data, a range of specialized Bulgarian datasets sourced by INSAIT Institute, and machine translations of popular English datasets.
This Bulgarian data was augmented with English datasets to retain English and logical reasoning skills.
The model's tokenizer has been extended to allow for a more efficient encoding of Bulgarian words written in Cyrillic.
This not only increases throughput of Cyrillic text but also performance.
## Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens.
The very first instruction should begin with a begin of sequence token `<s>`. Following instructions should not.
The assistant generation will be ended by the end-of-sequence token.
E.g.
```
text = "<s>[INST] Кога е основан Софийският университет? [/INST]"
"Софийският университет „Св. Климент Охридски“ е създаден на 1 октомври 1888 г.</s> "
"[INST] Кой го е основал? [/INST]"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
## Benchmarks
The model comes with a set of Benchmarks that are translations of the corresponding English-benchmarks. These are provided at [`https://github.com/insait-institute/lm-evaluation-harness-bg`](https://github.com/insait-institute/lm-evaluation-harness-bg)
As this is an improved version over version 0.1 of the same model and we include benchmark comparisons.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/aZAEv5qyLcPn5p4KrHpEw.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/6PafMC6StfUaPY1N8Xrta.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/637e1f8cf7e01589cc17bf7e/L1bKXq4Xiik1ZbTDuCnxj.png)
## Summary
- **Finetuned from:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Model type:** Causal decoder-only transformer language model
- **Language:** Bulgarian and English
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
- **Contact:** [bggpt@insait.ai](mailto:bggpt@insait.ai)
## Use in 🤗Transformers
First install direct dependencies:
```
pip install transformers torch accelerate
```
If you want faster inference using flash-attention2, you need to install these dependencies:
```bash
pip install packaging ninja
pip install flash-attn
```
Then load the model in transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
model="INSAIT-Institute/BgGPT-7B-Instruct-v0.2",
device_map="auto",
torch_dtype=torch.bfloat16,
use_flash_attn_2=True # optional
)
```
## Use with GGML / llama.cpp
The model in GGUF format [INSAIT-Institute/BgGPT-7B-Instruct-v0.2-GGUF](https://huggingface.co/INSAIT-Institute/BgGPT-7B-Instruct-v0.2-GGUF)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_INSAIT-Institute__BgGPT-7B-Instruct-v0.2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.08|
|AI2 Reasoning Challenge (25-Shot)|60.58|
|HellaSwag (10-Shot) |82.18|
|MMLU (5-Shot) |60.50|
|TruthfulQA (0-shot) |54.63|
|Winogrande (5-shot) |76.48|
|GSM8k (5-shot) |44.12|
|