File size: 12,262 Bytes
5c0d7ef
5edaefc
 
 
5c0d7ef
 
 
 
5edaefc
 
5c0d7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5edaefc
 
 
 
5c0d7ef
 
 
 
5edaefc
 
 
5c0d7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5edaefc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
""" Core mathematics for Additive Quantization (AQ): initialization, reconstruction and beam search"""
import functools
import os
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl


class FinalizedQuantizedLinear(nn.Module):
    def __init__(
        self,
        in_features: int,
        out_features: int,
        in_group_size: int,
        out_group_size: int,
        num_codebooks: int,
        nbits_per_codebook: int,
        bias=True,
        device=None,
        dtype=None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        assert self.in_features % in_group_size == 0
        assert self.out_features % out_group_size == 0
        num_out_groups = out_features // out_group_size
        num_in_groups = in_features // in_group_size
        self.out_group_size, self.in_group_size = out_group_size, in_group_size
        self.num_codebooks = num_codebooks
        self.nbits_per_codebook = nbits_per_codebook
        self.codebook_size = 2**nbits_per_codebook

        # CODES & CODEBOOKS
        self.codebooks = nn.Parameter(
            torch.empty(
                (num_codebooks, self.codebook_size, out_group_size, in_group_size),
                **factory_kwargs,
            ),
            requires_grad=True,
        )  # [num_codebooks, codebook_size, out_group_size, in_group_size]
        self.codes = nn.Parameter(
            torch.empty(
                (num_out_groups, num_in_groups, num_codebooks),
                device=device,
                dtype=get_int_dtype(nbits_per_codebook),
            ),
            requires_grad=False,
        )  #  [num_out_groups, num_in_groups, num_codebooks]

        # SCALES
        self.scales = nn.Parameter(
            torch.empty((num_out_groups, 1, 1, 1), **factory_kwargs), requires_grad=True
        )  #  [num_out_groups, num_in_groups, 1, 1] if scale_nbits > 0 else [num_out_groups, 1, 1, 1]

        # BIAS
        if bias:
            self.bias = nn.Parameter(torch.empty(out_features, **factory_kwargs))
        else:
            self.register_parameter("bias", None)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return forward_pass_quantized_linear(
            input, self.codes, self.codebooks, self.scales, self.bias
        )


def get_int_dtype(nbits: int) -> torch.dtype:
    if nbits <= 8:
        return torch.int8
    if nbits <= 16:
        return torch.int16
    if nbits <= 32:
        return torch.int32
    if nbits <= 64:
        return torch.int64
    raise ValueError(f"No dtype available for {nbits}-bit codebooks")


@torch.inference_mode()
def unpack_int_data(data: torch.IntTensor, nbits: int) -> torch.IntTensor:
    return data.to(torch.int64) % (2**nbits)


@functools.lru_cache()
def maybe_script(fn: callable) -> callable:
    """Apply torch.jit.script to function unless one is using TPU. TPU does not support torch.jit.script."""
    using_tpu = bool(os.environ.get("TPU_NAME"))
    # this is a reserved variable that must be set to TPU address (e.g. grpc://11.22.33.44:1337) for TPU to function
    should_script = int(os.environ.get("AQ_USE_JIT", not using_tpu))
    return torch.jit.script(fn) if should_script else fn


@maybe_script
def _dequantize_weight(
    codes: torch.Tensor, codebooks: torch.Tensor, scales: Optional[torch.Tensor] = None
) -> torch.Tensor:
    """
    Decode float weights from quantization codes. Differentiable.
    :param codes: tensor of integer quantization codes, shape [*dims, num_out_groups, num_in_groups, num_codebooks]
    :param codebooks: tensor of vectors for each quantization code, [num_codebooks, codebook_size, out_group_size, in_group_size]
    :param scales: weight will be multiplied by this factor, must be broadcastble with [*dims, out_groups, num_in_groups, out_group_size, in_group_size]
    :return: reconstructed weight tensor of shape [*dims, num_in_groups*group_size]
    """
    num_out_groups, num_in_groups, num_codebooks = codes.shape[-3:]
    num_codebooks, codebook_size, out_group_size, in_group_size = codebooks.shape
    out_features = num_out_groups * out_group_size
    in_features = num_in_groups * in_group_size
    codebook_offsets = torch.arange(
        0, num_codebooks * codebook_size, codebook_size, device=codes.device
    )  # shape: [num_codebooks]
    reconstructed_weight_flat = F.embedding_bag(
        codes.flatten(0, -2) + codebook_offsets,
        codebooks.flatten(0, 1).flatten(-2, -1),
        mode="sum",
    )  # [prod(dims) * num_out_groups * num_in_groups, out_group_size * in_group_size]

    reconstructed_weight_groupwise = reconstructed_weight_flat.view(
        list(codes.shape[:-3])
        + [num_out_groups, num_in_groups, out_group_size, in_group_size]
    )
    if scales is not None:
        reconstructed_weight_groupwise = reconstructed_weight_groupwise.mul(scales)
    return reconstructed_weight_groupwise.swapaxes(-3, -2).reshape(
        list(codes.shape[:-3]) + [out_features, in_features]
    )


def forward_pass_quantized_linear(
    input: torch.Tensor,
    codes: torch.IntTensor,
    codebooks: torch.Tensor,
    scales: torch.Tensor,
    bias: Optional[torch.Tensor],
) -> torch.Tensor:
    if input.is_cuda:
        matmul_result = aqlm_gemm_stupid(input, codes, codebooks, scales)
        if bias is not None:
            matmul_result += bias
        return matmul_result
    else:
        dequantized_weight = _dequantize_weight(
            unpack_int_data(codes, codebooks.shape[0].bit_length() - 1),
            codebooks,
            scales,
        )
        return F.linear(input, dequantized_weight, bias)


@triton.autotune(
    configs=[
        triton.Config({"UNUSED": 1}, num_stages=num_stages, num_warps=num_warps)
        for num_stages in (1, 2, 3, 4, 5)
        for num_warps in (1, 2, 4, 8)
    ],
    key=[
        "in_features",
        "out_features",
        "num_codebooks",
        "codebook_size",
        "out_group_size",
        "in_group_size",
        "num_input_groups",
        "num_input_groups_next_power_of_2",
        "compute_in_fp32",
    ],
)
@triton.jit
def _aqlm_gemv_simple(
    input_vec_ptr,
    output_vec_ptr,
    codes_i16_ptr,
    codebooks_ptr,
    scales_ptr,
    in_features: tl.constexpr,
    out_features: tl.constexpr,
    num_codebooks: tl.constexpr,
    codebook_size: tl.constexpr,
    out_group_size: tl.constexpr,
    in_group_size: tl.constexpr,
    num_input_groups: tl.constexpr,
    num_input_groups_next_power_of_2: tl.constexpr,
    compute_in_fp32: tl.constexpr,
    UNUSED: tl.constexpr,
):
    # variables ending with "_i" mean "for i-th output unit"
    pid = tl.program_id(axis=0)  # [0, 1, ... {out_features-1}]

    # Stage 1: load input data
    input_vec = tl.load(
        input_vec_ptr
        + tl.arange(0, num_input_groups_next_power_of_2)[:, None, None] * in_group_size
        + tl.arange(0, in_group_size)[None, None, :],
        mask=tl.arange(0, num_input_groups_next_power_of_2)[:, None, None]
        < num_input_groups,
    )
    # [in_features//in_group_size, 1, group_size]
    # Note: we could simply load input_vec then reshape
    #     input_vec = tl.load(input_vec_ptr + tl.arange(0, in_features))  # [in_features]
    #     input_vec = tl.view(input_vec, [num_input_groups, 1, in_group_size])
    #     , but this does not work because tl.view may reorder elements arbitrarily; see its docstring

    # Stage 2: load integer codes for the active row
    # [in_features // in_group_size, num_codebooks]
    codes_i_ptrs = (
        codes_i16_ptr
        + pid * num_input_groups * num_codebooks
        + tl.arange(0, num_input_groups_next_power_of_2)[:, None] * num_codebooks
        + tl.arange(0, num_codebooks)[None, :]
    )
    codes_i_mask_1d = tl.arange(0, num_input_groups_next_power_of_2) < num_input_groups

    codes_i = tl.load(
        codes_i_ptrs, mask=codes_i_mask_1d[:, None]
    )  # [in_features//in_group_size, num_codebooks]
    if codes_i.dtype == tl.int16:
        codes_i = codes_i.to(tl.int32)
        codes_i = (codes_i) + (
            codes_i < 0
        ) * codebook_size  # aka 2 ** nbits_per_codebook
        # ^-- (because codes are int16 tensors that contain uint data)

        # The following alternative does not work:
        #     codes_i = codes_i.to(tl.int32) % codebook_size # aka 2 ** nbits_per_codebook
    else:
        codes_i = codes_i.to(tl.int32)

    # shift codes_i so that codebooks after 0th point to correct indices in codebooks_ptr
    codes_i += (
        tl.arange(0, num_codebooks)[None, :] * codebook_size
    )  # aka 2 ** nbits_per_codebook
    # ^-- [in_group_size, num_codebooks]

    # Stage 3: convert codes to pointers to every individual (activated) weight in codebooks
    # [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
    out_group_ix = tl.arange(0, out_group_size)[None, None, :, None]
    in_group_ix = tl.arange(0, in_group_size)[None, None, None, :]
    weight_i_ptrs = (
        codebooks_ptr
        + codes_i[:, :, None, None] * out_group_size * in_group_size
        + out_group_ix * in_group_size
        + in_group_ix
    )

    # Stage 4: reconstruct weights, multiply by inputs and write out
    weights_i = tl.load(
        weight_i_ptrs, mask=codes_i_mask_1d[:, None, None, None], other=0
    )
    if compute_in_fp32:
        weights_i = weights_i.to(tl.float32)
        input_vec = input_vec.to(tl.float32)
    # ^-- [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
    weights_i = tl.sum(weights_i, axis=1)  # sum codebooks as per additive quantization
    # ^-- [in_features // in_group_size, out_group_size, in_group_size]

    if out_group_size == 1:
        scale = tl.load(scales_ptr + pid).to(weights_i.dtype)  # scalar
        output_i = tl.sum(weights_i * input_vec) * scale
        tl.store(output_vec_ptr + pid, output_i.to(input_vec.dtype))
    else:
        output_i = tl.sum(
            tl.sum(weights_i * input_vec, axis=2), axis=0
        )  # [out_group_size]
        output_i *= tl.load(scales_ptr + pid).to(weights_i.dtype)
        tl.store(
            output_vec_ptr + pid * out_group_size + tl.arange(0, out_group_size),
            output_i.to(input_vec.dtype),
        )


def next_power_of_2(x):
    return 1 if x == 0 else 2 ** (x - 1).bit_length()


def aqlm_gemv_simple(
    input_vec: torch.Tensor,
    codes_i16: torch.ShortTensor,
    codebooks: torch.Tensor,
    scales: torch.Tensor,
    compute_in_fp32: bool = True,
):

    device, dtype = codebooks.device, codebooks.dtype
    num_codebooks, codebook_size, out_group_size, in_group_size = codebooks.shape
    in_features = input_vec.shape[1]
    out_features = codes_i16.shape[0] * out_group_size
    num_input_groups = codes_i16.shape[1]
    assert input_vec.ndim == 2 and input_vec.shape[0] == 1, "do reshape; now!"
    assert scales.shape == (out_features // out_group_size, 1, 1, 1)
    assert in_features % in_group_size == 0
    assert codebooks.shape[1] == 2**16

    output_vec = torch.empty(1, out_features, device=device, dtype=dtype)
    # 1D launch kernel where each block computes output unit
    grid = lambda META: (out_features // out_group_size,)
    _aqlm_gemv_simple[grid](
        input_vec,
        output_vec,
        codes_i16,
        codebooks,
        scales,
        in_features,
        out_features,
        num_codebooks,
        codebook_size,
        out_group_size,
        in_group_size,
        num_input_groups,
        next_power_of_2(num_input_groups),
        compute_in_fp32,
    )

    return output_vec


def aqlm_gemm_stupid(
    input: torch.Tensor,
    codes_i16: torch.ShortTensor,
    codebooks: torch.Tensor,
    scales: torch.Tensor,
    compute_in_fp32: bool = True,
):
    original_shape = input.shape
    input = input.reshape(-1, original_shape[-1])
    return torch.cat(
        [
            aqlm_gemv_simple(
                input_vec.unsqueeze(0), codes_i16, codebooks, scales, compute_in_fp32
            )
            for input_vec in input
        ]
    ).reshape(original_shape[:-1] + (-1,))