File size: 6,363 Bytes
5c0d7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import triton
import triton.language as tl
from torch.autograd import Function


@triton.autotune(
    configs=[
        triton.Config({"UNUSED": 1}, num_stages=num_stages, num_warps=num_warps)
        for num_stages in (1, 2, 3, 4, 5)
        for num_warps in (1, 2, 4, 8)
    ],
    key=[
        "in_features",
        "out_features",
        "num_codebooks",
        "codebook_size",
        "out_group_size",
        "in_group_size",
        "num_input_groups",
        "num_input_groups_next_power_of_2",
        "compute_in_fp32",
    ],
)
@triton.jit
def _aqlm_gemv_simple(
    input_vec_ptr,
    output_vec_ptr,
    codes_i16_ptr,
    codebooks_ptr,
    scales_ptr,
    in_features: tl.constexpr,
    out_features: tl.constexpr,
    num_codebooks: tl.constexpr,
    codebook_size: tl.constexpr,
    out_group_size: tl.constexpr,
    in_group_size: tl.constexpr,
    num_input_groups: tl.constexpr,
    num_input_groups_next_power_of_2: tl.constexpr,
    compute_in_fp32: tl.constexpr,
    UNUSED: tl.constexpr,
):
    # variables ending with "_i" mean "for i-th output unit"
    pid = tl.program_id(axis=0)  # [0, 1, ... {out_features-1}]

    # Stage 1: load input data
    input_vec = tl.load(
        input_vec_ptr
        + tl.arange(0, num_input_groups_next_power_of_2)[:, None, None] * in_group_size
        + tl.arange(0, in_group_size)[None, None, :],
        mask=tl.arange(0, num_input_groups_next_power_of_2)[:, None, None] < num_input_groups,
    )
    # [in_features//in_group_size, 1, group_size]
    # Note: we could simply load input_vec then reshape
    #     input_vec = tl.load(input_vec_ptr + tl.arange(0, in_features))  # [in_features]
    #     input_vec = tl.view(input_vec, [num_input_groups, 1, in_group_size])
    #     , but this does not work because tl.view may reorder elements arbitrarily; see its docstring

    # Stage 2: load integer codes for the active row
    # [in_features // in_group_size, num_codebooks]
    codes_i_ptrs = (
        codes_i16_ptr
        + pid * num_input_groups * num_codebooks
        + tl.arange(0, num_input_groups_next_power_of_2)[:, None] * num_codebooks
        + tl.arange(0, num_codebooks)[None, :]
    )
    codes_i_mask_1d = tl.arange(0, num_input_groups_next_power_of_2) < num_input_groups

    codes_i = tl.load(codes_i_ptrs, mask=codes_i_mask_1d[:, None])  # [in_features//in_group_size, num_codebooks]
    if codes_i.dtype == tl.int16:
        codes_i = codes_i.to(tl.int32)
        codes_i = (codes_i) + (codes_i < 0) * codebook_size  # aka 2 ** nbits_per_codebook
        # ^-- (because codes are int16 tensors that contain uint data)

        # The following alternative does not work:
        #     codes_i = codes_i.to(tl.int32) % codebook_size # aka 2 ** nbits_per_codebook
    else:
        codes_i = codes_i.to(tl.int32)

    # shift codes_i so that codebooks after 0th point to correct indices in codebooks_ptr
    codes_i += tl.arange(0, num_codebooks)[None, :] * codebook_size  # aka 2 ** nbits_per_codebook
    # ^-- [in_group_size, num_codebooks]

    # Stage 3: convert codes to pointers to every individual (activated) weight in codebooks
    # [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
    out_group_ix = tl.arange(0, out_group_size)[None, None, :, None]
    in_group_ix = tl.arange(0, in_group_size)[None, None, None, :]
    weight_i_ptrs = (
        codebooks_ptr
        + codes_i[:, :, None, None] * out_group_size * in_group_size
        + out_group_ix * in_group_size
        + in_group_ix
    )

    # Stage 4: reconstruct weights, multiply by inputs and write out
    weights_i = tl.load(weight_i_ptrs, mask=codes_i_mask_1d[:, None, None, None], other=0)
    if compute_in_fp32:
        weights_i = weights_i.to(tl.float32)
        input_vec = input_vec.to(tl.float32)
    # ^-- [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
    weights_i = tl.sum(weights_i, axis=1)  # sum codebooks as per additive quantization
    # ^-- [in_features // in_group_size, out_group_size, in_group_size]

    if out_group_size == 1:
        scale = tl.load(scales_ptr + pid).to(weights_i.dtype)  # scalar
        output_i = tl.sum(weights_i * input_vec) * scale
        tl.store(output_vec_ptr + pid, output_i.to(input_vec.dtype))
    else:
        output_i = tl.sum(tl.sum(weights_i * input_vec, axis=2), axis=0)  # [out_group_size]
        output_i *= tl.load(scales_ptr + pid).to(weights_i.dtype)
        tl.store(output_vec_ptr + pid * out_group_size + tl.arange(0, out_group_size), output_i.to(input_vec.dtype))


def next_power_of_2(x):
    return 1 if x == 0 else 2 ** (x - 1).bit_length()


def aqlm_gemv_simple(
    input_vec: torch.Tensor,
    codes_i16: torch.ShortTensor,
    codebooks: torch.Tensor,
    scales: torch.Tensor,
    compute_in_fp32: bool = True,
):

    device, dtype = codebooks.device, codebooks.dtype
    num_codebooks, codebook_size, out_group_size, in_group_size = codebooks.shape
    in_features = input_vec.shape[1]
    out_features = codes_i16.shape[0] * out_group_size
    num_input_groups = codes_i16.shape[1]
    assert input_vec.ndim == 2 and input_vec.shape[0] == 1, "do reshape; now!"
    assert scales.shape == (out_features // out_group_size, 1, 1, 1)
    assert in_features % in_group_size == 0
    assert codebooks.shape[1] == 2**16

    output_vec = torch.empty(1, out_features, device=device, dtype=dtype)
    # 1D launch kernel where each block computes output unit
    grid = lambda META: (out_features // out_group_size,)
    _aqlm_gemv_simple[grid](
        input_vec,
        output_vec,
        codes_i16,
        codebooks,
        scales,
        in_features,
        out_features,
        num_codebooks,
        codebook_size,
        out_group_size,
        in_group_size,
        num_input_groups,
        next_power_of_2(num_input_groups),
        compute_in_fp32,
    )

    return output_vec


def aqlm_gemm_stupid(
    input: torch.Tensor,
    codes_i16: torch.ShortTensor,
    codebooks: torch.Tensor,
    scales: torch.Tensor,
    compute_in_fp32: bool = True,
):
    original_shape = input.shape
    input = input.reshape(-1, original_shape[-1])
    return torch.cat(
        [aqlm_gemv_simple(input_vec.unsqueeze(0), codes_i16, codebooks, scales, compute_in_fp32) for input_vec in input]
    ).reshape(original_shape[:-1] + (-1,))