File size: 1,916 Bytes
dbe3485
 
 
 
 
 
 
 
 
 
 
dbb9e77
dbe3485
 
 
 
 
 
 
dbb9e77
dbe3485
 
 
 
 
 
 
 
 
dbb9e77
dbe3485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: learn-python-easy-v2
  results: []
pipeline_tag: question-answering
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# learn-python-easy-v2

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on a samll dataset of 205 examples containing question and answer pairs regarding the Python Programming language for purposes of fine tuning experimentation.
It achieves the following results on the evaluation set:
- Loss: 0.7009

## Model description

More information needed

## Intended uses & limitations

This is intended to be used for experimental purposes regarding fine tuning of large language models and can be optimised for better outputs with more training examples.

## Training and evaluation data


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6791        | 1.0   | 164  | 0.6197          |
| 0.3764        | 2.0   | 328  | 0.5916          |
| 0.2089        | 3.0   | 492  | 0.6093          |
| 0.1416        | 4.0   | 656  | 0.6849          |
| 0.1185        | 5.0   | 820  | 0.7009          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2