File size: 10,120 Bytes
08ae94b
 
7e5a633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ae94b
7e5a633
08ae94b
7e5a633
 
 
 
 
 
 
 
ce36907
7e5a633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ed375
7e5a633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ed375
7e5a633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58fbc3
 
 
 
 
 
 
7e5a633
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
---
license: cc-by-nc-sa-4.0
datasets:
  - Iker/NoticIA
language:
  - es
metrics:
  - rouge
library_name: transformers
pipeline_tag: text-generation
base_model: openchat/openchat-3.5-0106
tags:
  - clickbait
  - noticia
  - spanish
  - summary
  - summarization
widget:
  - example_title: Summary Example
    messages:
      - role: user
        content: "Ahora eres una Inteligencia Artificial experta en desmontar titulares
          sensacionalistas o clickbait. Tu tarea consiste en analizar noticias
          con titulares sensacionalistas y generar un resumen de una sola frase
          que revele la verdad detrás del titular.\\nEste es el titular de la
          noticia: Le compra un abrigo a su abuela de 97 años y la reacción de
          esta es una fantasía\\nEl titular plantea una pregunta o proporciona
          información incompleta. Debes buscar en el cuerpo de la noticia una
          frase que responda lo que se sugiere en el título. Siempre que puedas
          cita el texto original, especialmente si se trata de una frase que
          alguien ha dicho. Si citas una frase que alguien ha dicho, usa
          comillas para indicar que es una cita. Usa siempre las mínimas
          palabras posibles. No es necesario que la respuesta sea una oración
          completa. Puede ser sólo el foco de la pregunta. Recuerda responder
          siempre en Español.\\nEste es el cuerpo de la noticia:\\nLa usuaria de
          X @Kokreta1 ha relatado la conversación que ha tenido con su abuela de
          97 años cuando le ha dado el abrigo que le ha comprado para su
          cumpleaños.\\nTeniendo en cuenta la avanzada edad de la señora, la
          tuitera le ha regalado una prenda acorde a sus años, algo con lo que
          su yaya no ha estado de acuerdo.\\nEl abrigo es de vieja, ha opinado
          la mujer cuando lo ha visto. Os juro que soy muy fan. Mañana vamos las
          dos (a por otro). Eso sí, la voy a llevar al Bershka, ha asegurado
          entre risas la joven.\\nSegún la propia cadena de ropa, la cual
          pertenece a Inditex, su público se caracteriza por ser jóvenes
          atrevidos, conocedores de las últimas tendencias e interesados en la
          música, las redes sociales y las nuevas tecnologías, por lo que la
          gente mayor no suele llevar este estilo.\\nLa inusual personalidad de
          la señora ha encantado a los usuarios de la red. Es por eso que el
          relato ha acumulado más de 1.000 me gusta y cerca de 100 retuits,
          además de una multitud de comentarios.\\n"

---

<table>
<tr>   
<td style="width:100%"><img src="https://github.com/ikergarcia1996/NoticIA/blob/main/assets/head.png?raw=true" align="right" width="100%"> </td>
</tr>
</table>

A model finetuned with the [NoticIA Dataset](https://huggingface.co/datasets/Iker/NoticIA). This model can generate summaries of clickbait headlines 

- 📖 Paper: [NoticIA: A Clickbait Article Summarization Dataset in Spanish](https://arxiv.org/abs/2404.07611)
- 📓 NoticIA Dataset: [https://huggingface.co/datasets/Iker/NoticIA](https://huggingface.co/datasets/Iker/NoticIA)
- 💻 Baseline Code: [https://github.com/ikergarcia1996/NoticIA](https://github.com/ikergarcia1996/NoticIA)
- 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e)
- 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/)


# Open Source Models
<table border="1" cellspacing="0" cellpadding="5">
    <thead>
        <tr>
            <th></th>
            <th><a href="https://huggingface.co/Iker/ClickbaitFighter-2B">Iker/ClickbaitFighter-2B</a></th>
            <th><a href="https://huggingface.co/Iker/ClickbaitFighter-7B">Iker/ClickbaitFighter-7B</a></th>
            <th><a href="https://huggingface.co/Iker/ClickbaitFighter-10B">Iker/ClickbaitFighter-10B</a></th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>Param. no.</td>
            <td>2B</td>
            <td>7B</td>
            <td>10M</td>
        </tr>
        <tr>
            <td>ROUGE</td>
            <td>36.26</td>
            <td>49.81</td>
            <td>52.01</td>
        </tr>
        <tr>
    </tbody>
</table>

# Evaluation Results
<table>
<tr>   
<td style="width:100%"><img src="https://github.com/ikergarcia1996/NoticIA/raw/main/results/Results.png" align="right" width="100%"> </td>
</tr>
</table>


# Usage example:

## Summarize a web article
```python
import torch # pip install torch
from newspaper import Article #pip3 install newspaper3k
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers

article_url ="https://www.huffingtonpost.es/virales/le-compra-abrigo-abuela-97nos-reaccion-fantasia.html"
article = Article(article_url)
article.download()
article.parse()
headline=article.title
body = article.text

def prompt(
    headline: str,
    body: str,
) -> str:
    """
    Generate the prompt for the model.

    Args:
        headline (`str`):
            The headline of the article.
        body (`str`):
            The body of the article.
    Returns:
        `str`: The formatted prompt.
    """

    return (
        f"Ahora eres una Inteligencia Artificial experta en desmontar titulares sensacionalistas o clickbait. "
        f"Tu tarea consiste en analizar noticias con titulares sensacionalistas y "
        f"generar un resumen de una sola frase que revele la verdad detrás del titular.\n"
        f"Este es el titular de la noticia: {headline}\n"
        f"El titular plantea una pregunta o proporciona información incompleta. "
        f"Debes buscar en el cuerpo de la noticia una frase que responda lo que se sugiere en el título. "
        f"Siempre que puedas cita el texto original, especialmente si se trata de una frase que alguien ha dicho. "
        f"Si citas una frase que alguien ha dicho, usa comillas para indicar que es una cita. "
        f"Usa siempre las mínimas palabras posibles. No es necesario que la respuesta sea una oración completa. "
        f"Puede ser sólo el foco de la pregunta. "
        f"Recuerda responder siempre en Español.\n"
        f"Este es el cuerpo de la noticia:\n"
        f"{body}\n"
    )

prompt = prompt(headline=headline, body=body)

tokenizer = AutoTokenizer.from_pretrained("Iker/ClickbaitFighter-7B")
model = AutoModelForCausalLM.from_pretrained(
    "Iker/ClickbaitFighter-7B", torch_dtype=torch.bfloat16, device_map="auto"
)

formatted_prompt = tokenizer.apply_chat_template(
    [{"role": "user", "content": prompt}],
    tokenize=False,
    add_generation_prompt=True,
)

model_inputs = tokenizer(
    [formatted_prompt], return_tensors="pt", add_special_tokens=False
)

model_output = model.generate(**model_inputs.to(model.device), generation_config=GenerationConfig(
  max_new_tokens=32,
  min_new_tokens=1,
  do_sample=False,
  num_beams=1,
  use_cache=True
))

summary = tokenizer.batch_decode(model_output,skip_special_tokens=True)[0]

print(summary.strip().split("\n")[-1]) # Get only the summary, without the prompt. 
```

## Run inference in the NoticIA dataset
```python
import torch # pip install torch
from datasets import load_dataset # pip install datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers

dataset = load_dataset("Iker/NoticIA")
example = dataset["test"][0]
headline = example["web_headline"]
body = example["web_text"]

def prompt(
    headline: str,
    body: str,
) -> str:
    """
    Generate the prompt for the model.

    Args:
        headline (`str`):
            The headline of the article.
        body (`str`):
            The body of the article.
    Returns:
        `str`: The formatted prompt.
    """

    return (
        f"Ahora eres una Inteligencia Artificial experta en desmontar titulares sensacionalistas o clickbait. "
        f"Tu tarea consiste en analizar noticias con titulares sensacionalistas y "
        f"generar un resumen de una sola frase que revele la verdad detrás del titular.\n"
        f"Este es el titular de la noticia: {headline}\n"
        f"El titular plantea una pregunta o proporciona información incompleta. "
        f"Debes buscar en el cuerpo de la noticia una frase que responda lo que se sugiere en el título. "
        f"Siempre que puedas cita el texto original, especialmente si se trata de una frase que alguien ha dicho. "
        f"Si citas una frase que alguien ha dicho, usa comillas para indicar que es una cita. "
        f"Usa siempre las mínimas palabras posibles. No es necesario que la respuesta sea una oración completa. "
        f"Puede ser sólo el foco de la pregunta. "
        f"Recuerda responder siempre en Español.\n"
        f"Este es el cuerpo de la noticia:\n"
        f"{body}\n"
    )

prompt = prompt(headline=headline, body=body)

tokenizer = AutoTokenizer.from_pretrained("Iker/ClickbaitFighter-7B")
model = AutoModelForCausalLM.from_pretrained(
    "Iker/ClickbaitFighter-7B", torch_dtype=torch.bfloat16, device_map="auto"
)

formatted_prompt = tokenizer.apply_chat_template(
    [{"role": "user", "content": prompt}],
    tokenize=False,
    add_generation_prompt=True,
)

model_inputs = tokenizer(
    [formatted_prompt], return_tensors="pt", add_special_tokens=False
)

model_output = model.generate(**model_inputs.to(model.device), generation_config=GenerationConfig(
  max_new_tokens=32,
  min_new_tokens=1,
  do_sample=False,
  num_beams=1,
  use_cache=True
))

summary = tokenizer.batch_decode(model_output,skip_special_tokens=True)[0]

print(summary.strip().split("\n")[-1]) # Get only the summary, without the prompt. 
```


# Citation

```bittext
@misc{noticia2024,
      title={NoticIA: A Clickbait Article Summarization Dataset in Spanish}, 
      author={Iker García-Ferrero and Begoña Altuna},
      year={2024},
      eprint={2404.07611},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```