|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import re |
|
import shutil |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import evaluate |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from datasets import ( |
|
DatasetDict, |
|
IterableDataset, |
|
IterableDatasetDict, |
|
concatenate_datasets, |
|
interleave_datasets, |
|
load_dataset, |
|
) |
|
from huggingface_hub import Repository, create_repo |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AddedToken, |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
WhisperConfig, |
|
WhisperFeatureExtractor, |
|
WhisperForConditionalGeneration, |
|
WhisperProcessor, |
|
WhisperTokenizerFast, |
|
get_scheduler, |
|
set_seed, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.34.0.dev0") |
|
|
|
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to distill from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} |
|
) |
|
teacher_model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained config name or path if not the same as model_name"}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "feature extractor name or path if not the same as model_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
subfolder: str = field( |
|
default="", |
|
metadata={ |
|
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" |
|
"specify the folder name here." |
|
}, |
|
) |
|
token: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " |
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
train_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech " |
|
"and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`." |
|
}, |
|
) |
|
train_dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should " |
|
"match the order of the datasets." |
|
}, |
|
) |
|
train_dataset_samples: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of samples in each dataset when loading multiple datasets with streaming mode. " |
|
"Not required when using one dataset or non-streaming mode. The sample values provide the sampling " |
|
"probability for each dataset. Setting them equal to the number of sample values ensures that every " |
|
"sample from every dataset is used once per epoch." |
|
}, |
|
) |
|
eval_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training " |
|
"dataset name if unspecified. Load multiple evaluation datasets by separating dataset " |
|
"ids by a '+' symbol." |
|
}, |
|
) |
|
eval_dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the " |
|
"training dataset config name if unspecified." |
|
}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set." |
|
) |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the text data in the training set."}, |
|
) |
|
eval_text_column_name: str = field( |
|
default="text", |
|
metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=30.0, |
|
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, |
|
) |
|
max_label_length: int = field( |
|
default=128, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set will pad the target sequence to a multiple of the provided" |
|
" value. This is important to avoid triggering recompilations on TPU." |
|
" If unspecified, will default to padding the targets to max length." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is" |
|
" especially useful when data preprocessing errors out in distributed" |
|
" training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with" |
|
" `preprocessing_only=True` so that the cached datasets can" |
|
" consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": ( |
|
"The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" |
|
) |
|
}, |
|
) |
|
streaming: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."}, |
|
) |
|
wer_threshold: float = field( |
|
default=None, |
|
metadata={ |
|
"help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` " |
|
"WER with the normalised transcriptions." |
|
}, |
|
) |
|
timestamp_probability: float = field( |
|
default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."} |
|
) |
|
condition_on_prev_probability: float = field( |
|
default=0.2, metadata={"help": "Probability for conditioning on the previous text example."} |
|
) |
|
return_timestamps: bool = field( |
|
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} |
|
) |
|
language: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Language for multilingual distillation. This argument should be set for multilingual distillation " |
|
"only. For English speech recognition, it should be left as `None`." |
|
) |
|
}, |
|
) |
|
task: str = field( |
|
default="transcribe", |
|
metadata={ |
|
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." |
|
"This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DistillationTrainingArguments(Seq2SeqTrainingArguments): |
|
freeze_encoder: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to freeze the entire encoder model. Only recommended when the entire encoder has been " |
|
"copied from the teacher model." |
|
) |
|
}, |
|
) |
|
temperature: Optional[float] = field( |
|
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} |
|
) |
|
kl_weight: Optional[float] = field( |
|
default=1.0, |
|
metadata={ |
|
"help": ( |
|
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is " |
|
"computed between the teacher-student hidden states and attentions." |
|
) |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"The data type (dtype) in which to run training. One of `float32` (full-precision), " |
|
"`float16` or `bfloat16` (both half-precision)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The start-of-sequence token id of the decoder. |
|
decoder_prev_token_id (:obj: `int`) |
|
The start-of-prompt token id of the decoder |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
""" |
|
|
|
processor: Any |
|
decoder_start_token_id: int |
|
decoder_prev_token_id: int |
|
input_padding: Union[bool, str] = "max_length" |
|
target_padding: Union[bool, str] = "max_length" |
|
max_target_length: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
model_input_name = self.processor.model_input_names[0] |
|
|
|
|
|
input_features = {model_input_name: [feature[model_input_name] for feature in features]} |
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
padding=self.input_padding, |
|
return_tensors="pt", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
labels = labels_batch["input_ids"] |
|
decoder_input_ids = labels[:, :-1] |
|
labels = labels[:, 1:] |
|
labels_mask = labels_batch.attention_mask[:, 1:] |
|
|
|
|
|
labels = labels.masked_fill(labels_mask.ne(1), -100) |
|
|
|
|
|
bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1) |
|
prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None] |
|
labels = torch.where(prompt_mask, -100, labels) |
|
|
|
batch["labels"] = labels |
|
batch["decoder_input_ids"] = decoder_input_ids |
|
|
|
return batch |
|
|
|
|
|
def log_metric( |
|
accelerator, |
|
metrics: Dict, |
|
train_time: float, |
|
step: int, |
|
epoch: int, |
|
learning_rate: float = None, |
|
prefix: str = "train", |
|
): |
|
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling.""" |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
log_metrics[f"{prefix}/epoch"] = epoch |
|
if learning_rate is not None: |
|
log_metrics[f"{prefix}/learning_rate"] = learning_rate |
|
accelerator.log(log_metrics, step=step) |
|
|
|
|
|
def log_pred( |
|
accelerator, |
|
pred_str: List[str], |
|
label_str: List[str], |
|
norm_pred_str: List[str], |
|
norm_label_str: List[str], |
|
step: int, |
|
prefix: str = "eval", |
|
num_lines: int = 200000, |
|
): |
|
"""Helper function to log target/predicted transcriptions to weights and biases (wandb).""" |
|
if accelerator.is_main_process: |
|
wandb_tracker = accelerator.get_tracker("wandb") |
|
|
|
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step |
|
prefix_pretty = prefix.replace("/", "-") |
|
|
|
|
|
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] |
|
|
|
wandb_tracker.log_table( |
|
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}", |
|
columns=["Target", "Pred", "Norm Target", "Norm Pred"], |
|
data=str_data[:num_lines], |
|
step=step, |
|
) |
|
|
|
|
|
str_data = np.asarray(str_data) |
|
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] |
|
|
|
wandb_tracker.log_table( |
|
table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}", |
|
columns=["Target", "Pred", "Norm Target", "Norm Pred"], |
|
data=str_data_incorrect[:num_lines], |
|
step=step, |
|
) |
|
|
|
|
|
def convert_dataset_str_to_list( |
|
dataset_names, |
|
dataset_config_names, |
|
splits=None, |
|
text_column_names=None, |
|
dataset_samples=None, |
|
default_split="train", |
|
) -> List[Dict]: |
|
""" |
|
Given three lists of dataset names, configs and splits, this function groups the corresponding |
|
names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the |
|
function returns a list of dictionaries, one for each dataset. |
|
""" |
|
if isinstance(dataset_names, str): |
|
dataset_names = dataset_names.split("+") |
|
dataset_config_names = dataset_config_names.split("+") |
|
splits = splits.split("+") if splits is not None else None |
|
text_column_names = text_column_names.split("+") if text_column_names is not None else None |
|
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None |
|
|
|
|
|
if len(dataset_names) != len(dataset_config_names): |
|
raise ValueError( |
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(dataset_config_names)} configs." |
|
) |
|
|
|
if splits is not None and len(splits) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." |
|
) |
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(text_column_names)} text column names." |
|
) |
|
|
|
if dataset_samples is not None: |
|
if len(dataset_samples) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " |
|
f"{len(dataset_samples)} samples." |
|
) |
|
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] |
|
else: |
|
dataset_samples = [None] * len(dataset_names) |
|
|
|
text_column_names = ( |
|
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] |
|
) |
|
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] |
|
|
|
dataset_names_dict = [] |
|
for i, ds_name in enumerate(dataset_names): |
|
dataset_names_dict.append( |
|
{ |
|
"name": ds_name, |
|
"config": dataset_config_names[i], |
|
"split": splits[i], |
|
"text_column_name": text_column_names[i], |
|
"samples": dataset_samples[i], |
|
} |
|
) |
|
return dataset_names_dict |
|
|
|
|
|
def load_multiple_datasets( |
|
dataset_names: Union[List, str], |
|
dataset_config_names: Union[List, str], |
|
splits: Optional[Union[List, str]] = None, |
|
text_column_names: Optional[List] = None, |
|
sampling_rate: Optional[int] = 16000, |
|
stopping_strategy: Optional[str] = "first_exhausted", |
|
dataset_samples: Optional[Union[List, np.array]] = None, |
|
streaming: Optional[bool] = True, |
|
seed: Optional[int] = None, |
|
accelerator: Optional[Accelerator] = None, |
|
**kwargs, |
|
) -> IterableDataset: |
|
dataset_names_dict = convert_dataset_str_to_list( |
|
dataset_names, dataset_config_names, splits, text_column_names, dataset_samples |
|
) |
|
|
|
if dataset_samples is not None: |
|
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] |
|
probabilities = np.array(dataset_samples) / np.sum(dataset_samples) |
|
else: |
|
probabilities = None |
|
|
|
if len(dataset_names_dict) == 1: |
|
dataset_dict = dataset_names_dict[0] |
|
|
|
return load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
streaming=streaming, |
|
**kwargs, |
|
) |
|
|
|
all_datasets = [] |
|
|
|
for dataset_dict in tqdm( |
|
dataset_names_dict, |
|
desc="Combining datasets...", |
|
disable=not accelerator.is_local_main_process if accelerator is not None else False, |
|
): |
|
dataset = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
streaming=streaming, |
|
**kwargs, |
|
) |
|
|
|
dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate)) |
|
if dataset_dict["text_column_name"] != "text": |
|
dataset = dataset.rename_column(dataset_dict["text_column_name"], "text") |
|
dataset = dataset.remove_columns(set(dataset.features.keys()) - {"audio", "text", "whisper_transcript"}) |
|
all_datasets.append(dataset) |
|
|
|
if streaming: |
|
interleaved_dataset = interleave_datasets( |
|
all_datasets, |
|
stopping_strategy=stopping_strategy, |
|
probabilities=probabilities, |
|
seed=seed, |
|
) |
|
else: |
|
interleaved_dataset = concatenate_datasets(all_datasets) |
|
|
|
return interleaved_dataset |
|
|
|
|
|
def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> Dict: |
|
"""Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used |
|
for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers |
|
in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer |
|
3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer |
|
2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely |
|
the output of this function for the arguments (student_layers=3, teacher_layers=12).""" |
|
layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int) |
|
layer_intervals[-1] = teacher_layers - 1 |
|
layer_map = {} |
|
|
|
for student_layer, teacher_layer in enumerate(layer_intervals): |
|
layer_map[student_layer] = teacher_layer |
|
|
|
return layer_map |
|
|
|
|
|
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]: |
|
"""Helper function to sort saved checkpoints from oldest to newest.""" |
|
ordering_and_checkpoint_path = [] |
|
|
|
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] |
|
|
|
for path in glob_checkpoints: |
|
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) |
|
if regex_match is not None and regex_match.groups() is not None: |
|
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) |
|
|
|
checkpoints_sorted = sorted(ordering_and_checkpoint_path) |
|
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] |
|
return checkpoints_sorted |
|
|
|
|
|
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None: |
|
"""Helper function to delete old checkpoints.""" |
|
if save_total_limit is None or save_total_limit <= 0: |
|
return |
|
|
|
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix) |
|
if len(checkpoints_sorted) <= save_total_limit: |
|
return |
|
|
|
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) |
|
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] |
|
for checkpoint in checkpoints_to_be_deleted: |
|
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") |
|
shutil.rmtree(checkpoint, ignore_errors=True) |
|
|
|
|
|
_RE_CHECKPOINT = re.compile(r"^" + "checkpoint" + r"\-(\d+)$") |
|
|
|
|
|
def get_last_checkpoint(folder): |
|
content = os.listdir(folder) |
|
checkpoints = [ |
|
path |
|
for path in content |
|
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path)) |
|
] |
|
if len(checkpoints) == 0: |
|
return |
|
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0]))) |
|
|
|
|
|
def get_parameter_names(model, forbidden_layer_types, forbidden_module=None): |
|
""" |
|
Returns the names of the model parameters that are not inside a forbidden layer or forbidden module. |
|
Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser |
|
(e.g. if the module is frozen). |
|
""" |
|
result = [] |
|
for name, child in model.named_children(): |
|
result += [ |
|
f"{name}.{n}" |
|
for n in get_parameter_names(child, forbidden_layer_types, forbidden_module) |
|
if not ( |
|
isinstance(child, tuple(forbidden_layer_types)) |
|
or (child in tuple(forbidden_module) if forbidden_module is not None else False) |
|
) |
|
] |
|
|
|
result += list(model._parameters.keys()) |
|
return result |
|
|
|
|
|
def main(): |
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if training_args.dtype == "float16": |
|
mixed_precision = "fp16" |
|
teacher_dtype = torch.float16 |
|
elif training_args.dtype == "bfloat16": |
|
mixed_precision = "bf16" |
|
teacher_dtype = torch.bfloat16 |
|
else: |
|
mixed_precision = "no" |
|
teacher_dtype = torch.float32 |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=training_args.gradient_accumulation_steps, |
|
mixed_precision=mixed_precision, |
|
log_with=training_args.report_to, |
|
project_dir=training_args.output_dir, |
|
) |
|
|
|
accelerator.init_trackers(project_name=data_args.wandb_project) |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " |
|
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
|
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if training_args.push_to_hub: |
|
|
|
repo_name = training_args.hub_model_id |
|
if repo_name is None: |
|
repo_name = Path(training_args.output_dir).absolute().name |
|
|
|
repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id |
|
|
|
repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) |
|
|
|
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "wandb" not in gitignore: |
|
gitignore.write("wandb\n") |
|
elif training_args.output_dir is not None: |
|
os.makedirs(training_args.output_dir, exist_ok=True) |
|
accelerator.wait_for_everyone() |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_multiple_datasets( |
|
data_args.train_dataset_name, |
|
data_args.train_dataset_config_name, |
|
splits=data_args.train_split_name, |
|
text_column_names=data_args.text_column_name, |
|
streaming=data_args.streaming, |
|
dataset_samples=data_args.train_dataset_samples, |
|
seed=training_args.seed, |
|
accelerator=accelerator, |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=model_args.token, |
|
) |
|
raw_datasets_train_features = list(raw_datasets["train"].features.keys()) |
|
|
|
if training_args.do_eval: |
|
dataset_names_dict = convert_dataset_str_to_list( |
|
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, |
|
data_args.eval_dataset_config_name |
|
if data_args.eval_dataset_config_name |
|
else data_args.train_dataset_config_name, |
|
splits=data_args.eval_split_name, |
|
text_column_names=data_args.eval_text_column_name, |
|
) |
|
all_eval_splits = [] |
|
if len(dataset_names_dict) == 1: |
|
|
|
dataset_dict = dataset_names_dict[0] |
|
all_eval_splits.append("eval") |
|
raw_datasets["eval"] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
if data_args.eval_text_column_name != "text": |
|
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text") |
|
else: |
|
|
|
for dataset_dict in dataset_names_dict: |
|
if dataset_dict["name"] == "esb/diagnostic-dataset": |
|
|
|
pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}" |
|
else: |
|
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" |
|
all_eval_splits.append(pretty_name) |
|
raw_datasets[pretty_name] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
|
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["text_column_name"], "text" |
|
) |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns( |
|
set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"} |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval: |
|
raise ValueError( |
|
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." |
|
) |
|
|
|
|
|
config = WhisperConfig.from_pretrained( |
|
(model_args.config_name if model_args.config_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=model_args.token, |
|
) |
|
feature_extractor = WhisperFeatureExtractor.from_pretrained( |
|
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=model_args.token, |
|
) |
|
tokenizer = WhisperTokenizerFast.from_pretrained( |
|
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
token=model_args.token, |
|
) |
|
|
|
|
|
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)] |
|
tokenizer.add_tokens(timestamps) |
|
|
|
teacher_model = WhisperForConditionalGeneration.from_pretrained( |
|
model_args.teacher_model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=teacher_dtype, |
|
) |
|
|
|
student_model = WhisperForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
subfolder=model_args.subfolder, |
|
token=model_args.token, |
|
low_cpu_mem_usage=True, |
|
) |
|
|
|
if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None: |
|
raise ValueError( |
|
f"Make sure that `config.decoder_start_token_id` is correctly defined for both the " |
|
f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the " |
|
f"student and {teacher_model.config.decoder_start_token_id} for the teacher." |
|
) |
|
|
|
share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model |
|
|
|
|
|
if training_args.gradient_checkpointing: |
|
student_model.gradient_checkpointing_enable() |
|
|
|
|
|
if training_args.freeze_encoder: |
|
student_model.freeze_encoder() |
|
student_model.model.encoder.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
|
|
|
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: |
|
|
|
is_multilingual = True |
|
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False) |
|
student_model.generation_config.update( |
|
**{ |
|
"language": data_args.language, |
|
"task": data_args.task, |
|
} |
|
) |
|
elif data_args.language is not None: |
|
raise ValueError( |
|
"Setting language token for an English-only checkpoint is not permitted. The language argument should " |
|
"only be set for multilingual checkpoints." |
|
) |
|
else: |
|
is_multilingual = False |
|
|
|
|
|
if accelerator.is_main_process: |
|
feature_extractor.save_pretrained(training_args.output_dir) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
config.save_pretrained(training_args.output_dir) |
|
student_model.generation_config.save_pretrained(training_args.output_dir) |
|
|
|
accelerator.wait_for_everyone() |
|
processor = WhisperProcessor.from_pretrained(training_args.output_dir) |
|
|
|
|
|
|
|
sampling_rate = feature_extractor.sampling_rate |
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=sampling_rate), |
|
) |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * sampling_rate) |
|
min_input_length = int(data_args.min_duration_in_seconds * sampling_rate) |
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length |
|
) |
|
|
|
timestamp_probability = data_args.timestamp_probability |
|
condition_on_prev_probability = data_args.condition_on_prev_probability |
|
return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False |
|
|
|
timestamp_ids = tokenizer.timestamp_ids() |
|
timestamp_begin = tokenizer.all_special_ids[-1] |
|
timestamp_position = 3 if is_multilingual else 1 |
|
|
|
decoder_start_token_id = student_model.config.decoder_start_token_id |
|
decoder_prev_token_id = tokenizer.all_special_ids[-3] |
|
decoder_eot_token_id = tokenizer.eos_token_id |
|
|
|
language = data_args.language |
|
task = data_args.task |
|
|
|
num_workers = data_args.preprocessing_num_workers |
|
dataloader_num_workers = training_args.dataloader_num_workers |
|
|
|
metric = evaluate.load("wer") |
|
normalizer = ( |
|
BasicTextNormalizer() if language is not None else EnglishTextNormalizer(tokenizer.english_spelling_normalizer) |
|
) |
|
wer_threshold = data_args.wer_threshold |
|
|
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = ( |
|
raw_datasets["train"].take(data_args.max_train_samples) |
|
if data_args.streaming |
|
else raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
for eval_split in all_eval_splits: |
|
raw_datasets[eval_split] = ( |
|
raw_datasets[eval_split].take(data_args.max_eval_samples) |
|
if data_args.streaming |
|
else raw_datasets[eval_split].select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
|
|
def is_wer_in_range(ground_truth, whisper_transcript): |
|
norm_ground_truth = normalizer(ground_truth) |
|
if ( |
|
isinstance(whisper_transcript, str) |
|
and whisper_transcript.startswith("[") |
|
and whisper_transcript.endswith("]") |
|
): |
|
whisper_transcript = re.findall(r"\d+", whisper_transcript) |
|
whisper_transcript = [int(token) for token in whisper_transcript] |
|
if isinstance(whisper_transcript, list): |
|
whisper_transcript = tokenizer.decode(whisper_transcript, skip_special_tokens=True) |
|
if len(norm_ground_truth) > 0 and whisper_transcript is not None: |
|
norm_whisper_transcript = normalizer(whisper_transcript) |
|
wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth]) |
|
return wer < wer_threshold |
|
else: |
|
|
|
return False |
|
|
|
filter_by_wer_threshold = partial( |
|
raw_datasets["train"].filter, |
|
function=is_wer_in_range, |
|
input_columns=["text", "whisper_transcript"], |
|
) |
|
|
|
if wer_threshold is not None: |
|
raw_datasets["train"] = ( |
|
filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer") |
|
if not data_args.streaming |
|
else filter_by_wer_threshold() |
|
) |
|
|
|
|
|
def has_timestamp_tokens(input_str): |
|
""" |
|
Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for |
|
pairs of left and right-angle brackets. |
|
""" |
|
return bool(re.search("\<[^\>]*\>", input_str)) |
|
|
|
def prepare_train_dataset(batch): |
|
""" |
|
Pre-process the raw dataset in a three stage process: |
|
1. Convert the audio arrays to log-mel spectrogram inputs |
|
2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability) |
|
3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability) |
|
TODO(SG): see whether we can 'pack' the audio inputs closer to 30 second chunks |
|
""" |
|
|
|
audio = [sample["array"] for sample in batch["audio"]] |
|
inputs = feature_extractor(audio, sampling_rate=sampling_rate) |
|
batch["input_features"] = inputs.input_features |
|
batch["input_length"] = [len(sample) for sample in audio] |
|
|
|
|
|
input_str_batched = batch["whisper_transcript"] |
|
|
|
all_token_ids = [] |
|
all_token_ids_unprompted = [] |
|
for input_str in input_str_batched: |
|
if isinstance(input_str, list): |
|
|
|
token_ids = input_str |
|
elif input_str[0].startswith("[") and input_str[0].endswith("]"): |
|
token_ids = re.findall(r"\d+", input_str) |
|
token_ids = [int(token) for token in token_ids] |
|
else: |
|
token_ids = None |
|
|
|
if token_ids is not None: |
|
|
|
token_ids = [token for token in token_ids if token != decoder_eot_token_id] |
|
token_ids = token_ids + [decoder_eot_token_id] |
|
|
|
has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0 |
|
if has_timestamps: |
|
|
|
predict_timestamps = bool(np.random.binomial(1, timestamp_probability)) |
|
if not predict_timestamps: |
|
|
|
token_ids = [token for token in token_ids if token < timestamp_begin] |
|
token_ids.insert(timestamp_position, timestamp_begin) |
|
else: |
|
|
|
has_timestamps = has_timestamp_tokens(input_str) |
|
|
|
if has_timestamps: |
|
predict_timestamps = bool(np.random.binomial(1, timestamp_probability)) |
|
if not predict_timestamps: |
|
|
|
input_str = tokenizer._filter_timestamp_ids(input_str) |
|
else: |
|
predict_timestamps = False |
|
|
|
tokenizer.set_prefix_tokens(language=language, task=task, predict_timestamps=predict_timestamps) |
|
token_ids = tokenizer(input_str).input_ids |
|
|
|
all_token_ids_unprompted.append(token_ids) |
|
|
|
condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability)) |
|
if condition_on_prev and len(all_token_ids_unprompted) > 1: |
|
|
|
prompt_ids = all_token_ids_unprompted[-2] |
|
|
|
prompt_ids = [token for token in prompt_ids if token < timestamp_begin] |
|
if len(prompt_ids) > 0: |
|
|
|
prompt_ids = [decoder_prev_token_id] + prompt_ids[timestamp_position:-1] |
|
if len(prompt_ids + token_ids) < max_label_length: |
|
token_ids = prompt_ids + token_ids |
|
all_token_ids.append(token_ids) |
|
|
|
batch["labels"] = all_token_ids |
|
return batch |
|
|
|
def prepare_eval_dataset(batch): |
|
|
|
sample = batch["audio"] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
batch["input_features"] = inputs.input_features[0] |
|
batch["input_length"] = len(sample["array"]) |
|
|
|
|
|
input_str = batch["text"] |
|
batch["labels"] = tokenizer(input_str).input_ids |
|
return batch |
|
|
|
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
if training_args.do_train: |
|
|
|
|
|
|
|
map_fn_train = partial( |
|
raw_datasets["train"].map, |
|
function=prepare_train_dataset, |
|
remove_columns=raw_datasets_train_features, |
|
batched=True, |
|
batch_size=max(training_args.per_device_train_batch_size // 4, 4), |
|
) |
|
vectorized_datasets["train"] = ( |
|
map_fn_train(num_proc=num_workers, desc="preprocess train dataset") |
|
if not data_args.streaming |
|
else map_fn_train() |
|
) |
|
if training_args.do_eval: |
|
for eval_split in all_eval_splits: |
|
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys()) |
|
map_fn_eval = partial( |
|
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features |
|
) |
|
if accelerator.is_main_process: |
|
vectorized_datasets[eval_split] = ( |
|
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset") |
|
if not data_args.streaming |
|
else map_fn_eval() |
|
) |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return min_input_length < length < max_input_length |
|
|
|
filter_by_audio_fn = partial( |
|
vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"] |
|
) |
|
vectorized_datasets = ( |
|
filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length") |
|
if not data_args.streaming |
|
else filter_by_audio_fn() |
|
) |
|
|
|
|
|
def is_labels_in_length_range(labels): |
|
return 0 < len(labels) <= max_label_length |
|
|
|
filter_by_labels_fn = partial( |
|
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"] |
|
) |
|
vectorized_datasets = ( |
|
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset") |
|
if not data_args.streaming |
|
else filter_by_labels_fn() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
if data_args.streaming: |
|
raise ValueError( |
|
"When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion" |
|
"of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing " |
|
"on the fly with streaming mode." |
|
) |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
def compute_metrics(preds, labels): |
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) |
|
|
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str) |
|
|
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) |
|
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str |
|
|
|
|
|
|
|
per_device_train_batch_size = int(training_args.per_device_train_batch_size) |
|
train_batch_size = per_device_train_batch_size * accelerator.num_processes |
|
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
|
|
if not data_args.streaming and training_args.max_steps < 0: |
|
num_epochs = int(training_args.num_train_epochs) |
|
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size |
|
total_train_steps = steps_per_epoch * num_epochs |
|
elif training_args.max_steps > 0: |
|
logger.info("max_steps is given, it will override any value given in num_train_epochs") |
|
total_train_steps = int(training_args.max_steps) |
|
|
|
num_epochs = sys.maxsize |
|
steps_per_epoch = total_train_steps |
|
else: |
|
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") |
|
|
|
if training_args.eval_steps is None: |
|
logger.info( |
|
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}" |
|
) |
|
eval_steps = steps_per_epoch |
|
else: |
|
eval_steps = training_args.eval_steps |
|
|
|
|
|
decay_parameters = get_parameter_names( |
|
student_model, |
|
[nn.LayerNorm], |
|
forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None, |
|
) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [param for name, param in student_model.named_parameters() if name in decay_parameters], |
|
"weight_decay": training_args.weight_decay, |
|
}, |
|
{ |
|
"params": [param for name, param in student_model.named_parameters() if name not in decay_parameters], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
optimizer = torch.optim.AdamW( |
|
params=optimizer_grouped_parameters, |
|
lr=training_args.learning_rate, |
|
betas=(training_args.adam_beta1, training_args.adam_beta2), |
|
eps=training_args.adam_epsilon, |
|
) |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
name=training_args.lr_scheduler_type, |
|
optimizer=optimizer, |
|
num_warmup_steps=training_args.warmup_steps * accelerator.num_processes, |
|
num_training_steps=total_train_steps * accelerator.num_processes, |
|
) |
|
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
decoder_start_token_id=decoder_start_token_id, |
|
decoder_prev_token_id=decoder_prev_token_id, |
|
input_padding="longest", |
|
target_padding="max_length", |
|
max_target_length=max_label_length, |
|
) |
|
|
|
|
|
|
|
num_beams = ( |
|
training_args.generation_num_beams |
|
if training_args.generation_num_beams is not None |
|
else getattr(student_model.generation_config, "num_beams", 1) |
|
) |
|
|
|
gen_kwargs = { |
|
"max_length": max_label_length, |
|
"num_beams": num_beams, |
|
"return_timestamps": return_timestamps, |
|
} |
|
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: |
|
|
|
gen_kwargs.update( |
|
{ |
|
"language": data_args.language, |
|
"task": data_args.task, |
|
} |
|
) |
|
|
|
|
|
student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare( |
|
student_model, teacher_model, optimizer, lr_scheduler |
|
) |
|
|
|
def kl_divergence(target_distribution, log_predicted_distribution, labels): |
|
kl_loss = nn.KLDivLoss(reduction="none") |
|
divergence = kl_loss(log_predicted_distribution, target_distribution) |
|
|
|
padding_mask = labels >= 0 |
|
padding_mask = padding_mask.unsqueeze(-1) |
|
divergence = divergence * padding_mask |
|
|
|
divergence = divergence.sum() / padding_mask.sum() |
|
return divergence |
|
|
|
|
|
def train_step( |
|
batch, |
|
temperature=2.0, |
|
): |
|
student_model.train() |
|
teacher_model.eval() |
|
|
|
student_outputs = student_model(**batch) |
|
with torch.no_grad(): |
|
if share_hidden_states: |
|
|
|
|
|
encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state) |
|
teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) |
|
else: |
|
|
|
teacher_outputs = teacher_model(**batch) |
|
|
|
|
|
ce_loss = student_outputs.loss |
|
|
|
teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1) |
|
|
|
student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1) |
|
|
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 |
|
|
|
|
|
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss |
|
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} |
|
return loss, metrics |
|
|
|
|
|
def eval_step(batch): |
|
student_model.eval() |
|
teacher_model.eval() |
|
|
|
with torch.no_grad(): |
|
student_outputs = student_model(**batch) |
|
if share_hidden_states: |
|
encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state) |
|
teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) |
|
else: |
|
teacher_outputs = teacher_model(**batch) |
|
|
|
|
|
ce_loss = student_outputs.loss |
|
|
|
|
|
student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1) |
|
teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1) |
|
|
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) |
|
|
|
|
|
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss |
|
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} |
|
return metrics |
|
|
|
def generate_step(batch): |
|
student_model.eval() |
|
output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs) |
|
output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id) |
|
return output_ids |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") |
|
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}") |
|
logger.info( |
|
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" |
|
) |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
|
|
train_time = 0 |
|
train_start = time.time() |
|
steps_trained_progress_bar = tqdm( |
|
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process |
|
) |
|
continue_training = True |
|
epochs_trained = 0 |
|
cur_step = 0 |
|
|
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
|
|
if checkpoint is not None: |
|
accelerator.load_state(checkpoint) |
|
|
|
pattern = r"checkpoint-(\d+)-epoch-(\d+)" |
|
match = re.search(pattern, checkpoint) |
|
cur_step = int(match.group(1)) |
|
epochs_trained = int(match.group(2)) |
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step") |
|
logger.info(f" Continuing training from epoch {epochs_trained}") |
|
logger.info(f" Continuing training from global step {cur_step}") |
|
|
|
steps_trained_progress_bar.update(cur_step) |
|
|
|
for epoch in range(0, epochs_trained): |
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
|
|
if not data_args.streaming and training_args.max_steps < 0: |
|
|
|
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps |
|
else: |
|
|
|
|
|
|
|
resume_step = None |
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
else: |
|
resume_step = None |
|
|
|
for epoch in range(epochs_trained, num_epochs): |
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
train_dataloader = DataLoader( |
|
vectorized_datasets["train"], |
|
collate_fn=data_collator, |
|
batch_size=per_device_train_batch_size, |
|
num_workers=dataloader_num_workers, |
|
pin_memory=training_args.dataloader_pin_memory, |
|
) |
|
train_dataloader = accelerator.prepare(train_dataloader) |
|
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset): |
|
train_dataloader.dataset.set_epoch(epoch) |
|
|
|
if resume_step is not None: |
|
|
|
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) |
|
resume_step = None |
|
|
|
for batch in train_dataloader: |
|
with accelerator.accumulate(student_model): |
|
loss, train_metric = train_step(batch, temperature=training_args.temperature) |
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
steps_trained_progress_bar.update(1) |
|
cur_step += 1 |
|
|
|
if cur_step % training_args.logging_steps == 0: |
|
steps_trained_progress_bar.write( |
|
f"Step... ({cur_step} / {total_train_steps} | Loss:" |
|
f" {train_metric['loss']}, Learning Rate:" |
|
f" {lr_scheduler.get_last_lr()[0]})" |
|
) |
|
log_metric( |
|
accelerator, |
|
metrics=train_metric, |
|
learning_rate=lr_scheduler.get_last_lr()[0], |
|
train_time=train_time + time.time() - train_start, |
|
step=cur_step, |
|
epoch=epoch, |
|
prefix="train", |
|
) |
|
|
|
|
|
if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps: |
|
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}") |
|
accelerator.save_state(output_dir=intermediate_dir) |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir) |
|
|
|
if cur_step == total_train_steps: |
|
student_model = accelerator.unwrap_model(student_model) |
|
student_model.save_pretrained(training_args.output_dir) |
|
|
|
if training_args.push_to_hub: |
|
repo.push_to_hub( |
|
commit_message=f"Saving train state of step {cur_step}", |
|
blocking=False, |
|
) |
|
|
|
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps): |
|
train_time += time.time() - train_start |
|
student_model.eval() |
|
|
|
for eval_split in all_eval_splits: |
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_start = time.time() |
|
|
|
validation_dataloader = DataLoader( |
|
vectorized_datasets[eval_split], |
|
collate_fn=data_collator, |
|
batch_size=per_device_eval_batch_size, |
|
drop_last=False, |
|
num_workers=dataloader_num_workers, |
|
pin_memory=training_args.dataloader_pin_memory, |
|
) |
|
validation_dataloader = accelerator.prepare(validation_dataloader) |
|
|
|
for batch in tqdm( |
|
validation_dataloader, |
|
desc=f"Evaluating {eval_split}...", |
|
position=2, |
|
disable=not accelerator.is_local_main_process, |
|
): |
|
|
|
eval_metric = eval_step(batch) |
|
eval_metric = accelerator.gather_for_metrics(eval_metric) |
|
eval_metrics.append(eval_metric) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
generated_ids = generate_step(batch) |
|
|
|
generated_ids, labels = accelerator.gather_for_metrics( |
|
(generated_ids, batch["labels"]) |
|
) |
|
eval_preds.extend(generated_ids) |
|
eval_labels.extend(labels) |
|
|
|
eval_time = time.time() - eval_start |
|
|
|
eval_metrics = { |
|
key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0] |
|
} |
|
|
|
|
|
wer_desc = "" |
|
if training_args.predict_with_generate: |
|
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( |
|
eval_preds, eval_labels |
|
) |
|
eval_metrics.update(wer_metric) |
|
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) |
|
log_pred( |
|
accelerator, |
|
pred_str, |
|
label_str, |
|
norm_pred_str, |
|
norm_label_str, |
|
step=cur_step, |
|
prefix=eval_split, |
|
) |
|
|
|
|
|
steps_trained_progress_bar.write( |
|
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |" |
|
f" {wer_desc})" |
|
) |
|
|
|
log_metric( |
|
accelerator, |
|
metrics=eval_metrics, |
|
train_time=eval_time, |
|
step=cur_step, |
|
epoch=epoch, |
|
prefix=eval_split, |
|
) |
|
|
|
|
|
train_start = time.time() |
|
|
|
|
|
if cur_step == total_train_steps: |
|
continue_training = False |
|
break |
|
|
|
if not continue_training: |
|
break |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|