File size: 1,852 Bytes
bb7f908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---

library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_nono
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_nono

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6025

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 4

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 8

- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- lr_scheduler_warmup_steps: 100
- training_steps: 500

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step | Validation Loss |

|:-------------:|:-------:|:----:|:---------------:|

| 0.6064        | 16.6667 | 100  | 0.5937          |

| 0.5045        | 33.3333 | 200  | 0.5903          |

| 0.481         | 50.0    | 300  | 0.5985          |

| 0.4639        | 66.6667 | 400  | 0.5867          |

| 0.4483        | 83.3333 | 500  | 0.6025          |





### Framework versions



- Transformers 4.46.2

- Pytorch 2.5.1+cu121

- Datasets 3.1.0

- Tokenizers 0.20.0