File size: 3,913 Bytes
46f7742
 
 
 
 
62b5660
46f7742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b5660
 
 
 
 
46f7742
 
 
 
 
 
 
 
62b5660
46f7742
 
62b5660
46f7742
 
 
 
 
 
 
 
 
 
 
 
 
62b5660
 
46f7742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b5660
 
 
46f7742
 
 
 
 
62b5660
 
46f7742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b5660
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
from typing import Optional, Tuple, List
from collections import OrderedDict

from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer, AutoTokenizer


def load_vocab(vocab_file):
    vocab = OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


class CharTokenizer(PreTrainedTokenizer):
    vocab_files_names = {"vocab_file": "vocab.txt"}

    def __init__(
        self,
        vocab_file=None,
        pad_token="[pad]",
        unk_token="[unk]",
        bos_token="[bos]",
        eos_token="[eos]",
        do_lower_case=False,
        *args,
        **kwargs
    ):
        super().__init__(
            pad_token=pad_token,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            do_lower_case=do_lower_case,
            **kwargs
        )
        self.do_lower_case = do_lower_case

        if not vocab_file or not os.path.isfile(vocab_file):
            self.vocab = OrderedDict()
            self.ids_to_tokens = OrderedDict()
        else:
            self.vocab = load_vocab(vocab_file)
            self.ids_to_tokens = OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])

    def train(self, file_path):
        vocab = set()
        with open(file_path) as r:
            for line in r:
                word = line.strip()
                if self.do_lower_case:
                    word = word.lower()
                vocab |= set(word)
        vocab = list(vocab)
        vocab.sort()
        special_tokens = [self.pad_token, self.unk_token, self.bos_token, self.eos_token]
        vocab = special_tokens + vocab

        for i, ch in enumerate(vocab):
            self.vocab[ch] = i
        self.ids_to_tokens = vocab

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return self.vocab

    def _convert_token_to_id(self, token):
        if self.do_lower_case:
            token = token.lower()
        return self.vocab.get(token, self.vocab[self.unk_token])

    def _convert_id_to_token(self, index):
        return self.ids_to_tokens[index]

    def _tokenize(self, text):
        if self.do_lower_case:
            text = text.lower()
        return list(text)

    def convert_tokens_to_string(self, tokens):
        return "".join(tokens)

    def build_inputs_with_special_tokens(
        self,
        token_ids_0: List[int],
        token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        bos = [self.bos_token_id]
        eos = [self.eos_token_id]
        return bos + token_ids_0 + eos

    def get_special_tokens_mask(
         self,
         token_ids_0: List[int],
         token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        return [1] + ([0] * len(token_ids_0)) + [1]

    def create_token_type_ids_from_sequences(
        self,
        token_ids_0: List[int],
        token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        return (len(token_ids_0) + 2) * [0]

    def save_vocabulary(
        self,
        save_directory: str,
        filename_prefix: Optional[str] = None
    ) -> Tuple[str]:
        assert os.path.isdir(save_directory)
        vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") +
            self.vocab_files_names["vocab_file"]
        )
        index = 0
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                assert index == token_index
                writer.write(token + "\n")
                index += 1
        return (vocab_file,)

AutoTokenizer.register("char_tokenizer", CharTokenizer)