|
import os |
|
from typing import Optional, Tuple, List |
|
from collections import OrderedDict |
|
|
|
from torch.utils.data import Dataset |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
def load_vocab(vocab_file): |
|
vocab = OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip("\n") |
|
vocab[token] = index |
|
return vocab |
|
|
|
|
|
class CharTokenizer(PreTrainedTokenizer): |
|
vocab_files_names = {"vocab_file": "vocab.txt"} |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
pad_token="[PAD]", |
|
unk_token="[UNK]", |
|
bos_token="[BOS]", |
|
eos_token="[EOS]", |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__( |
|
pad_token=pad_token, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
**kwargs |
|
) |
|
|
|
if not vocab_file or not os.path.isfile(vocab_file): |
|
self.vocab = OrderedDict() |
|
self.ids_to_tokens = OrderedDict() |
|
else: |
|
self.vocab = load_vocab(vocab_file) |
|
self.ids_to_tokens = OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) |
|
|
|
def train(self, file_path): |
|
vocab = set() |
|
with open(file_path) as r: |
|
for line in r: |
|
word = line.strip() |
|
vocab |= set(word) |
|
vocab = list(vocab) |
|
vocab.sort() |
|
special_tokens = [self.pad_token, self.unk_token, self.bos_token, self.eos_token] |
|
vocab = special_tokens + vocab |
|
|
|
for i, ch in enumerate(vocab): |
|
self.vocab[ch] = i |
|
self.ids_to_tokens = vocab |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.vocab) |
|
|
|
def get_vocab(self): |
|
return self.vocab |
|
|
|
def _convert_token_to_id(self, token): |
|
return self.vocab.get(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
return self.ids_to_tokens[index] |
|
|
|
def _tokenize(self, text): |
|
return list(text) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
return "".join(tokens) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
bos = [self.bos_token_id] |
|
eos = [self.eos_token_id] |
|
return bos + token_ids_0 + eos |
|
|
|
def get_special_tokens_mask( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
return (len(token_ids_0) + 2) * [0] |
|
|
|
def save_vocabulary( |
|
self, |
|
save_directory: str, |
|
filename_prefix: Optional[str] = None |
|
) -> Tuple[str]: |
|
assert os.path.isdir(save_directory) |
|
vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") + |
|
self.vocab_files_names["vocab_file"] |
|
) |
|
index = 0 |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): |
|
assert index == token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|