File size: 4,173 Bytes
c80b7c0 2cb28a0 c80b7c0 7403592 c80b7c0 6f3d67b c80b7c0 6f3d67b c80b7c0 6f3d67b c80b7c0 6f3d67b c80b7c0 ae7552f c80b7c0 ae7552f c80b7c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
datasets:
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch
- IlyaGusev/ru_turbo_alpaca_evol_instruct
- lksy/ru_instruct_gpt4
language:
- ru
pipeline_tag: conversational
license: cc-by-4.0
---
# Saiga/Mistral 7B, Russian Mistral-based chatbot
Based on [Mistral OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca).
This is an adapter-only version.
Llama.cpp version: TBA
Colab: TBA
Training code: [link](https://github.com/IlyaGusev/rulm/tree/master/self_instruct).
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_NAME = "IlyaGusev/saiga_mistral_7b"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>"
DEFAULT_RESPONSE_TEMPLATE = "<s>bot\n"
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
class Conversation:
def __init__(
self,
message_template=DEFAULT_MESSAGE_TEMPLATE,
system_prompt=DEFAULT_SYSTEM_PROMPT,
response_template=DEFAULT_RESPONSE_TEMPLATE
):
self.message_template = message_template
self.response_template = response_template
self.messages = [{
"role": "system",
"content": system_prompt
}]
def add_user_message(self, message):
self.messages.append({
"role": "user",
"content": message
})
def add_bot_message(self, message):
self.messages.append({
"role": "bot",
"content": message
})
def get_prompt(self, tokenizer):
final_text = ""
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
final_text += DEFAULT_RESPONSE_TEMPLATE
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto"
)
model = PeftModel.from_pretrained(
model,
MODEL_NAME,
torch_dtype=torch.float16
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for inp in inputs:
conversation = Conversation()
conversation.add_user_message(inp)
prompt = conversation.get_prompt(tokenizer)
output = generate(model, tokenizer, prompt, generation_config)
print(inp)
print(output)
print()
print("==============================")
print()
```
Examples:
```
User: Почему трава зеленая?
Saiga:
```
```
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч
Saiga:
```
v1:
- dataset code revision d0d123dd221e10bb2a3383bcb1c6e4efe1b4a28a
- wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/ip1qmm9p)
- 5 datasets: ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_instruct_gpt4
- Datasets merging script: [create_short_chat_set.py](https://github.com/IlyaGusev/rulm/blob/d0d123dd221e10bb2a3383bcb1c6e4efe1b4a28a/self_instruct/src/data_processing/create_short_chat_set.py)
- saiga_mistral_7b vs saiga2_13b: 243-31-141
|