InMedData commited on
Commit
b113487
1 Parent(s): f292a3c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -182
README.md CHANGED
@@ -1,201 +1,127 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - medical
5
+ license: cc-by-nc-sa-4.0
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ base_model: Intel/neural-chat-7b-v3-1
10
  ---
11
+ ## InMD-X: Large Language Models for Internal Medicine Doctors
12
+ We introduce InMD-X, a collection of
13
+ multiple large language models specifically designed
14
+ to cater to the unique characteristics and demands
15
+ of Internal Medicine Doctors (IMD). InMD-X represents
16
+ a groundbreaking development in natural language
17
+ processing, offering a suite of language models
18
+ fine-tuned for various aspects of the internal medicine
19
+ field. These models encompass a wide range of medical
20
+ sub-specialties, enabling IMDs to perform more
21
+ efficient and accurate research, diagnosis, and documentation.
22
+ InMD-X’s versatility and adaptability
23
+ make it a valuable tool for improving the healthcare
24
+ industry, enhancing communication between healthcare
25
+ professionals, and advancing medical research.
26
+ Each model within InMD-X is meticulously tailored
27
+ to address specific challenges faced by IMDs, ensuring
28
+ the highest level of precision and comprehensiveness
29
+ in clinical text analysis and decision support.
30
 
 
31
 
 
 
 
 
 
32
 
33
  ### Model Description
34
 
35
  <!-- Provide a longer summary of what this model is. -->
36
 
37
+ - **Model type:** [CausalLM]
38
+ - **Language(s) (NLP):** [English]
39
+ - **License:** [CC-BY-NC-SA](https://creativecommons.org/licenses/by-nc-sa/4.0/)
40
+ - **Finetuned from model [optional]:** [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)
 
 
 
 
 
41
 
42
  ### Model Sources [optional]
43
 
44
  <!-- Provide the basic links for the model. -->
45
 
46
+ - **Paper [optional]:** [InMD-X](http://arxiv.org/abs/2402.11883)
 
 
47
 
48
  ## Uses
49
+ ```python
50
+ import torch
51
+ from peft import PeftModel, PeftConfig
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
+ peft_model_id = "InMedData/InMD-X-ONC"
54
+ config = PeftConfig.from_pretrained(peft_model_id)
55
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
56
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
57
+ # Load the Lora model
58
+ model = PeftModel.from_pretrained(model, peft_model_id)
59
+ pipeline = transformers.pipeline(
60
+ "text-generation",
61
+ model=model,
62
+ tokenizer = tokenizer,
63
+ device_map="auto" # if you have GPU
64
+ )
65
+ def inference(pipeline, Qustion,answer_only = False):
66
+ sequences = pipeline("Answer the next question in one sentence.\n"+
67
+ Qustion,
68
+ do_sample=True,
69
+ top_k=10,
70
+ top_p = 0.9,
71
+ temperature = 0.2,
72
+ num_return_sequences=1,
73
+ eos_token_id=tokenizer.eos_token_id,
74
+ max_length=500, # can increase the length of sequence
75
+ )
76
+
77
+ Answers = []
78
+ for seq in sequences:
79
+
80
+ Answer = seq['generated_text'].split(Qustion)[-1].replace("\n","")
81
+ Answers.append(Answer)
82
+ return Answers
83
+
84
+ question = 'What is the association between long-term beta-blocker use after myocardial infarction (MI) and the risk of reinfarction and death?'
85
+ answers = inference(pipeline, question)
86
+ print(answers)
87
+ ```
88
+
89
+
90
+ ### List of LoRA config
91
+ based on [Parameter-Efficient Fine-Tuning (PEFT)](https://github.com/huggingface/peft)
92
+
93
+ Parameter | PT | SFT
94
+ :------:| :------:| :------:
95
+ r | 8 | 8
96
+ lora alpha | 32 | 32
97
+ lora dropout | 0.05 | 0.05
98
+ target | q, k, v, o,up, down, gate | q, k, v, o,up,down, gate
99
+
100
+
101
+ ### List of Training arguments
102
+ based on [Transformer Reinforcement Learning (TRL)](https://github.com/huggingface/trl)
103
+
104
+ Parameter | PT | SFT
105
+ :------:| :------:| :------:
106
+ train epochs | 3 | 1
107
+ per device train batch size | 1 | 1
108
+ optimizer | adamw_hf | adamw_hf
109
+ evaluation strategy | no | no
110
+ learning_rate | 1e-4 | 1e-4
111
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
112
+ ### Experimental setup
113
+ - **Ubuntu 22.04.3 LTS**
114
+ - **GPU - NVIDIA A100(40GB)**
115
+ - **Python**: 3.10.12
116
+ - **Pytorch**:2.1.1+cu118
117
+ - **Transformer**:4.37.0.dev0
118
+ ## Limitations
119
+ InMD-X consists of a collection of segmented models. The integration of the models has not yet been fully accomplished, resulting in each model being fragmented.
120
+ Due to the absence of benchmarks, the segmented models have not been adequately evaluated. Future research will involve the development of new benchmarks and the integration of models to facilitate an objective evaluation.
121
+ ## Non-commercial use
122
+ These models are available exclusively for research purposes and are not intended for commercial use.
123
+ <!-- ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  **BibTeX:**
125
+ -->
126
+ ## INMED DATA
127
+ INMED DATA is developing large language models (LLMs) specifically tailored for medical applications. For more information, please visit our website [TBD].