--- license: apache-2.0 base_model: - cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser - Locutusque/Hyperion-1.5-Mistral-7B - ibm/merlinite-7b library_name: transformers tags: - mergekit - merge - code model-index: - name: Magic-Dolphin-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.78 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 58.01 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 51.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b name: Open LLM Leaderboard --- # Magic-Dolphin-7b The follow-up to this model has been released, check out the updated benchmarks here for [Excalibur-7b](https://huggingface.co/InferenceIllusionist/Excalibur-7b) A full suite of GGUF quantizations can be found [here](https://huggingface.co/RichardErkhov/InferenceIllusionist_-_Magic-Dolphin-7b-gguf), courtesy of [RichardErkhov](https://huggingface.co/RichardErkhov/) A linear merge of: - [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) - [Locutusque/Hyperion-1.5-Mistral-7B](https://huggingface.co/Locutusque/Hyperion-1.5-Mistral-7B) - [ibm/merlinite-7b](https://huggingface.co/ibm/merlinite-7b) These three models showed excellent acumen in technical topics so I wanted to see how they would behave together in a merge. Several different ratios were tested before this release, in the end a higher weighting for merlinite-7b helped smooth out some edges. This model is a test of how LAB tuning is impacted by merges with models leveraging DPO. ### Benchmark Performance | Name | Avg. | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | | Magic-Dolphin-7b | 67.48 | 65.78 | 85.61 | 64.64 | 58.01 | 79.64 | 51.18 | | dolphin-2.6-mistral-7b-dpo-laser | 67.28 | 66.3 | 85.73 | 63.16 | 61.71 | 79.16 | 47.61 | | merlinite-7b | 64 | 63.65 | 84.52 | 64.91 | 50.15 | 79.72 | 41.09 | | Hyperion-1.5-Mistral-7B | 61.43 | 60.49 | 83.64 | 63.57 | 41.78 | 78.61 | 40.49 | This was my first experiment with merging models so any feedback is greatly appreciated. Uses Alpaca template.
Sample Question ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) * [Locutusque/Hyperion-1.5-Mistral-7B](https://huggingface.co/Locutusque/Hyperion-1.5-Mistral-7B) * [ibm/merlinite-7b](https://huggingface.co/ibm/merlinite-7b) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: models/dolphin-2.6-mistral-7b-dpo-laser parameters: weight: 1.0 - model: models/Hyperion-1.5-Mistral-7B parameters: weight: 0.3 - model: models/merlinite-7b parameters: weight: 0.5 merge_method: linear dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_InferenceIllusionist__Magic-Dolphin-7b) | Metric |Value| |---------------------------------|----:| |Avg. |67.48| |AI2 Reasoning Challenge (25-Shot)|65.78| |HellaSwag (10-Shot) |85.61| |MMLU (5-Shot) |64.64| |TruthfulQA (0-shot) |58.01| |Winogrande (5-shot) |79.64| |GSM8k (5-shot) |51.18|