File size: 2,199 Bytes
58e0a19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from datasets import load_dataset
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, DataCollatorForLanguageModeling

# Load the tokenizer and set the padding token
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')  # Load the GPT-2 tokenizer
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token  # Set a default pad token if not defined

# Tokenize function with padding and truncation
def tokenize_function(examples):
    return tokenizer(
        examples['Question'],  # Use the correct column name
        padding='max_length',  # Ensure consistent padding
        truncation=True,       # Enable truncation
        max_length=128         # Define a suitable max length
    )

# Load the dataset
dataset = load_dataset('InnerI/synCAI_144kda')  # Load your specific dataset

# Tokenize the dataset with batched processing
tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Load the model
model = GPT2LMHeadModel.from_pretrained('gpt2-medium')  # Load GPT-2 model

# Define the data collator for language modeling
data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer,
    mlm=False  # Set to False for standard language modeling (non-masked)
)

# Define training arguments with output directory and other settings
training_args = TrainingArguments(
    output_dir=r"InnerI/synCAI-144k-gpt2.5",  # Use raw string for Windows path
    overwrite_output_dir=True,
    num_train_epochs=1,  # Number of epochs for training
    per_device_train_batch_size=4,  # Batch size for each training device
    save_steps=10_000,  # Save model checkpoint every 10,000 steps
    save_total_limit=2,  # Limit to 2 checkpoints
    prediction_loss_only=True,  # Record only loss during training
)

# Initialize the Trainer with model, arguments, and collator
trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=tokenized_datasets['train'],  # Use the tokenized train dataset
)

# Start training the model
trainer.train()

# Save the fine-tuned model to the specified output directory
trainer.save_model(r"CAI-gpt2.5")  # Use raw string for Windows path