import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer and model model_name = "synCAI-144k-gpt2.5" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Check if GPU is available and move model to GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def generate_text(prompt, model, tokenizer, device, max_length=100, temperature=0.7, top_p=0.9, top_k=50): try: # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt") inputs = {key: value.to(device) for key, value in inputs.items()} # Generate text outputs = model.generate( inputs['input_ids'], max_length=max_length, temperature=temperature, top_p=top_p, top_k=top_k ) # Decode and return the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text except Exception as e: print(f"Error generating text for prompt '{prompt}': {e}") return None # Example input prompts input_prompts = [ "Explain the significance of the project:", "What methodologies were used in the research?", "What are the future implications of the findings?" ] # Generate and print texts for each prompt for prompt in input_prompts: generated_text = generate_text(prompt, model, tokenizer, device) if generated_text: print(f"Prompt: {prompt}") print(f"Generated Text: {generated_text}\n")