File size: 4,794 Bytes
623c9b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import tensorflow as tf
import tensorflow_datasets as tfds
import os
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras import regularizers
assert 'COLAB_TPU_ADDR' in os.environ, 'Missin TPU?'
if('COLAB_TPU_ADDR') in os.environ:
TF_MASTER = 'grpc://{}'.format(os.environ['COLAB_TPU_ADDR'])
else:
TF_MASTER = ''
tpu_address = TF_MASTER
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu_address)
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
def create_model():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(256, (3, 3), activation='relu', kernel_regularizer=regularizers.l2(0.001)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu', kernel_regularizer=regularizers.l2(0.001)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(0.001)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')
])
def get_dataset(batch_size, is_training=True):
split = 'train' if is_training else 'test'
dataset, info = tfds.load(name='mnist', split=split, with_info= True, as_supervised=True, try_gcs=True)
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255.0
return image, label
dataset = dataset.map(scale)
if is_training:
dataset = dataset.shuffle(10000)
dataset = dataset.repeat()
dataset = dataset.batch(batch_size)
return dataset
with strategy.scope():
model = create_model()
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy'])
model.summary()
batch_size = 512
train_dataset = get_dataset(batch_size, True)
validation_dataset = get_dataset(batch_size, False)
with strategy.scope():
model = create_model()
model.compile(optimizer='adam', steps_per_execution=50, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy'])
epochs = 80
steps_per_epoch = 60000 // batch_size
validation_steps = 10000 // batch_size
history = model.fit(train_dataset, epochs=epochs, steps_per_epoch=steps_per_epoch, validation_data=validation_dataset, validation_steps=validation_steps)
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(15, 15))
plt.subplot(2, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(2, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
final_daset = validation_dataset.take(10)
test_images, test_labels = next(iter(final_daset.take(10)))
class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# Получение предсказаний нейросети для 10 изображений
predictions = model.predict(test_images)
fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(15, 6),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
# Отображение изображения
ax.imshow(test_images[i])
# Отображение меток и предсказаний
true_label = class_names[test_labels[i]]
pred_label = class_names[np.argmax(predictions[i])]
if true_label == pred_label:
ax.set_title("Это: {}, ИИ: {}".format(true_label, pred_label), color='green')
else:
ax.set_title("Это: {}, ИИ: {}".format(true_label, pred_label), color='red')
plt.tight_layout()
plt.show() |