File size: 6,456 Bytes
70179d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.normalization import FP32LayerNorm, RMSNorm
from typing import Callable, List, Optional, Tuple, Union
import math

import numpy as np
from PIL import Image


class IPAFluxAttnProcessor2_0(nn.Module):
    """Attention processor used typically in processing the SD3-like self-attention projections."""
    
    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
        super().__init__()

        self.hidden_size = hidden_size # 3072
        self.cross_attention_dim = cross_attention_dim # 4096
        self.scale = scale
        self.num_tokens = num_tokens
        
        self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        
        self.norm_added_k = RMSNorm(128, eps=1e-5, elementwise_affine=False)
        #self.norm_added_v = RMSNorm(128, eps=1e-5, elementwise_affine=False)
            
    def __call__(
        self,
        attn,
        hidden_states: torch.FloatTensor,
        image_emb: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
                
        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # torch.Size([1, 24, 4800, 128])
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)
        
        if image_emb is not None:
            # `ip-adapter` projections
            ip_hidden_states = image_emb
            ip_hidden_states_key_proj = self.to_k_ip(ip_hidden_states)
            ip_hidden_states_value_proj = self.to_v_ip(ip_hidden_states)

            ip_hidden_states_key_proj = ip_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            ip_hidden_states_value_proj = ip_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            ip_hidden_states_key_proj = self.norm_added_k(ip_hidden_states_key_proj)
            #ip_hidden_states_valye_proj = self.norm_added_v(ip_hidden_states_value_proj)

            ip_hidden_states = F.scaled_dot_product_attention(query, 
                                                              ip_hidden_states_key_proj, 
                                                              ip_hidden_states_value_proj, 
                                                              dropout_p=0.0, is_causal=False)

            ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            ip_hidden_states = ip_hidden_states.to(query.dtype)
                        
        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
                        
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            
            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
            
            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) # (512+3840,128)

        if image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
        
        if encoder_hidden_states is not None:

            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )
            if image_emb is not None:
                hidden_states = hidden_states + self.scale * ip_hidden_states
                        
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
            
            return hidden_states, encoder_hidden_states
        else:
            if image_emb is not None:
                hidden_states = hidden_states + self.scale * ip_hidden_states
            
            return hidden_states