|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from diffusers.models.normalization import FP32LayerNorm, RMSNorm |
|
from typing import Callable, List, Optional, Tuple, Union |
|
import math |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
class IPAFluxAttnProcessor2_0(nn.Module): |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
self.norm_added_k = RMSNorm(128, eps=1e-5, elementwise_affine=False) |
|
|
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
image_emb: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
mask: Optional[torch.Tensor] = None, |
|
) -> torch.FloatTensor: |
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
if image_emb is not None: |
|
|
|
ip_hidden_states = image_emb |
|
ip_hidden_states_key_proj = self.to_k_ip(ip_hidden_states) |
|
ip_hidden_states_value_proj = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_hidden_states_key_proj = ip_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
ip_hidden_states_value_proj = ip_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
ip_hidden_states_key_proj = self.norm_added_k(ip_hidden_states_key_proj) |
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention(query, |
|
ip_hidden_states_key_proj, |
|
ip_hidden_states_value_proj, |
|
dropout_p=0.0, is_causal=False) |
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
|
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
if image_emb is not None: |
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
return hidden_states, encoder_hidden_states |
|
else: |
|
if image_emb is not None: |
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
return hidden_states |