File size: 1,741 Bytes
4a5af3d 7623cdf 4a5af3d 03e2753 4a5af3d a1a450c 4a5af3d a1a450c 4a5af3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# SD3 Controlnet
| raw | control image | output |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img src="./raw.jpg" width = "400" /> | <img src="./canny.jpg" width = "400" /> | <img src="./demo_1.jpg" width = "400" /> |
# Install Diffusers-SD3-Controlnet
The current [diffusers](https://github.com/instantX-research/diffusers_sd3_control.git) have not been merged into the official code yet.
```cmd
git clone -b sd3_control https://github.com/instantX-research/diffusers_sd3_control.git
cd diffusers_sd3_control
pip install -e .
```
# Demo
```python
import torch
from diffusers.utils import load_image
import sys, os
sys.path.append('/path/diffusers/examples/community')
from pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline
# load pipeline
base_model = 'stabilityai/stable-diffusion-3-medium-diffusers'
pipe = StableDiffusion3CommonPipeline.from_pretrained(
base_model,
controlnet_list=['InstantX/SD3-Controlnet-Canny']
)
pipe.to('cuda:0', torch.float16)
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
n_prompt = 'NSFW, nude, naked, porn, ugly'
# controlnet config
controlnet_conditioning = [
dict(
control_index=0,
control_image=load_image('https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg'),
control_weight=0.7,
control_pooled_projections='zeros'
)
]
# infer
image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
controlnet_conditioning=controlnet_conditioning,
num_inference_steps=28,
guidance_scale=7.0,
height=1024,
width=1024,
).images[0]
```
|